Suppr超能文献

中国武汉 HIV 感染者不完全免疫重建及其预测因素。

Incomplete immune reconstitution and its predictors in people living with HIV in Wuhan, China.

机构信息

Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China.

Hubei Clinical Research Center for Infectious Diseases, Wuhan, 430023, Hubei, China.

出版信息

BMC Public Health. 2023 Sep 16;23(1):1808. doi: 10.1186/s12889-023-16738-w.

Abstract

OBJECTIVE

This study aimed to build and validate a nomogram model to predict the risk of incomplete immune reconstitution in people living with HIV (PLWH).

METHODS

Totally 3783 individuals with a confirmed diagnosis of HIV/AIDS were included. A predictive model was developed based on a retrospective set (N = 2678) and was validated using the remaining cases (N = 1105). Univariate and multivariate logistic regression analyses were performed to determine valuable predictors among the collected clinical and laboratory variables. The predictive model is presented in the form of a nomogram, which is internally and externally validated with two independent datasets. The discrimination of nomograms was assessed by calculating the area under the curve (AUC). Besides, calibration curve and decision curve (DCA) analyses were performed in the training and validation sets.

RESULTS

The final model comprised 5 predictors, including baseline CD4, age at ART initiation, BMI, HZ and TBIL. The AUC of the nomogram model was 0.902, 0.926, 0.851 in the training cohort, internal validation and external cohorts. The calibration accuracy and diagnostic performance were satisfactory in both the training and validation sets.

CONCLUSIONS

This predictive model based on a retrospective study was externally validated using 5 readily available clinical indicators. It showed high performance in predicting the risk of incomplete immune reconstitution in people living with HIV.

摘要

目的

本研究旨在构建和验证一种列线图模型,以预测人类免疫缺陷病毒(HIV)感染者免疫重建不完全的风险。

方法

共纳入 3783 例确诊为 HIV/AIDS 的个体。基于回顾性队列(N=2678)建立预测模型,并使用其余病例(N=1105)进行验证。对收集的临床和实验室变量进行单因素和多因素逻辑回归分析,以确定有价值的预测因子。预测模型以列线图的形式呈现,该模型通过两个独立的数据集进行内部和外部验证。通过计算曲线下面积(AUC)评估列线图的判别能力。此外,在训练集和验证集中进行校准曲线和决策曲线(DCA)分析。

结果

最终模型包括 5 个预测因子,包括基线 CD4、ART 开始时的年龄、BMI、HZ 和 TBIL。列线图模型在训练队列、内部验证和外部队列中的 AUC 分别为 0.902、0.926、0.851。在训练和验证组中,校准精度和诊断性能均令人满意。

结论

该基于回顾性研究的预测模型使用 5 个易于获得的临床指标进行了外部验证,在预测 HIV 感染者免疫重建不完全的风险方面表现出较高的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7a5/10505310/8b25ce1fc703/12889_2023_16738_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验