Chen Suling, Zhang Lixia, Mao Jingchun, Qian Zhe, Jiang Yuanhui, Gao Xinrui, Tao Mingzhu, Liang Guangyu, Peng Jie, Cai Shaohang
Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangzhou, China.
Front Cell Infect Microbiol. 2025 Mar 11;15:1466655. doi: 10.3389/fcimb.2025.1466655. eCollection 2025.
Although highly active antiretroviral therapy (HAART) has greatly enhanced the prognosis for people living with HIV (PLWH), some individuals fail to achieve adequate immune reconstitution, known as immunological nonresponse (INR), which is linked to poor prognosis and higher mortality. However, the early prediction and intervention of INR remains challenging in South China.
This study included 1,577 PLWH who underwent at least two years of HAART and clinical follow-up between 2017 and 2022 at two major tertiary hospitals in South China. We utilized logistic multivariate regression to identify independent predictors of INR and employed restricted cubic splines (RCS) for nonlinear analysis. We also developed several machine-learning models, assessing their performance using internal and external datasets to generate receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). The best-performing model was further interpreted using Shapley additive explanations (SHAP) values.
Independent predictors of INR included baseline, 6-month and 12-month CD4+ T cell counts, baseline hemoglobin, and 6-month hemoglobin levels. RCS analysis highlighted significant nonlinear relationships between baseline CD4+ T cells, 12-month CD4+ T cells and baseline hemoglobin with INR. The Random Forest model demonstrated superior predictive accuracy, with ROC areas of 0.866, 0.943, and 0.897 across the datasets. Calibration was robust, with Brier scores of 0.136, 0.102, and 0.126. SHAP values indicated that early CD4+T cell counts and CD4/CD8 ratio were crucial in predicting INR.
This study introduces the random forest model to predict incomplete immune reconstitution in PLWH, which can significantly assist clinicians in the early prediction and intervention of INR among PLWH.
尽管高效抗逆转录病毒疗法(HAART)极大地改善了人类免疫缺陷病毒感染者(PLWH)的预后,但仍有一些个体未能实现充分的免疫重建,即免疫无反应(INR),这与预后不良和较高的死亡率相关。然而,在中国南方,INR的早期预测和干预仍然具有挑战性。
本研究纳入了1577例PLWH,他们于2017年至2022年期间在中国南方两家大型三级医院接受了至少两年的HAART及临床随访。我们使用逻辑多元回归来确定INR的独立预测因素,并采用限制立方样条(RCS)进行非线性分析。我们还开发了几种机器学习模型,使用内部和外部数据集评估其性能,以生成受试者工作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)。使用Shapley加性解释(SHAP)值对表现最佳的模型进行进一步解释。
INR的独立预测因素包括基线、6个月和12个月的CD4+T细胞计数、基线血红蛋白以及6个月时的血红蛋白水平。RCS分析突出了基线CD4+T细胞、12个月CD4+T细胞和基线血红蛋白与INR之间的显著非线性关系。随机森林模型显示出卓越的预测准确性,在各个数据集中的ROC曲线下面积分别为0.866、0.943和0.897。校准效果良好,Brier分数分别为0.136、0.102和0.126。SHAP值表明早期CD4+T细胞计数和CD4/CD8比值在预测INR方面至关重要。
本研究引入随机森林模型来预测PLWH中的免疫重建不全,这可显著帮助临床医生对PLWH中的INR进行早期预测和干预。