Rocque Brittany, Guion Kate, Singh Pranay, Bangerth Sarah, Pickard Lauren, Bhattacharjee Jashdeep, Eguizabal Sofia, Weaver Carly, Chopra Shefali, Zhou Shengmei, Kohli Rohit, Sher Linda, Ekser Burcin, Emamaullee Juliet A
University of Southern California.
Children's Hospital Los Angeles.
Res Sq. 2023 Sep 5:rs.3.rs-3307940. doi: 10.21203/rs.3.rs-3307940/v1.
Single cell and spatially resolved 'omic' techniques have enabled deep characterization of clinical pathologies that remain poorly understood, providing unprecedented insights into molecular mechanisms of disease. However, transcriptomic platforms are costly, limiting sample size, which increases the possibility of pre-analytical variables such as tissue processing and storage procedures impacting RNA quality and downstream analyses. Furthermore, spatial transcriptomics have not yet reached single cell resolution, leading to the development of multiple deconvolution methods to predict individual cell types within each transcriptome 'spot' on tissue sections. In this study, we performed spatial transcriptomics and single nucleus RNA sequencing (snRNASeq) on matched specimens from patients with either histologically normal or advanced fibrosis to establish important aspects of tissue handling, data processing, and downstream analyses of biobanked liver samples. We observed that tissue preservation technique impacts transcriptomic data, especially in fibrotic liver. Deconvolution of the spatial transcriptome using paired snRNASeq data generated a spatially resolved, single cell dataset with 24 unique liver cell phenotypes. We determined that cell-cell interactions predicted using ligand-receptor analysis of snRNASeq data poorly correlated with celullar relationships identified using spatial transcriptomics. Our study provides a framework for generating spatially resolved, single cell datasets to study gene expression and cell-cell interactions in biobanked clinical samples with advanced liver disease.
单细胞和空间分辨“组学”技术能够深入表征目前仍了解不足的临床病理,为疾病的分子机制提供了前所未有的见解。然而,转录组学平台成本高昂,限制了样本量,这增加了诸如组织处理和储存程序等分析前变量影响RNA质量和下游分析的可能性。此外,空间转录组学尚未达到单细胞分辨率,导致多种反卷积方法的发展,以预测组织切片上每个转录组“点”内的单个细胞类型。在本研究中,我们对组织学正常或晚期纤维化患者的匹配样本进行了空间转录组学和单核RNA测序(snRNASeq),以确定生物样本库中肝脏样本的组织处理、数据处理和下游分析的重要方面。我们观察到组织保存技术会影响转录组数据,尤其是在纤维化肝脏中。使用配对的snRNASeq数据对空间转录组进行反卷积,生成了一个具有24种独特肝细胞表型的空间分辨单细胞数据集。我们确定,使用snRNASeq数据的配体-受体分析预测的细胞间相互作用与使用空间转录组学确定的细胞关系相关性较差。我们的研究提供了一个框架,用于生成空间分辨的单细胞数据集,以研究晚期肝病生物样本库临床样本中的基因表达和细胞间相互作用。