Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.
Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.
EMBO Mol Med. 2020 Aug 7;12(8):e12387. doi: 10.15252/emmm.202012387. Epub 2020 Jun 29.
Electrical cochlear implants (eCIs) partially restore hearing and enable speech comprehension to more than half a million users, thereby re-connecting deaf patients to the auditory scene surrounding them. Yet, eCIs suffer from limited spectral selectivity, resulting from current spread around each electrode contact and causing poor speech recognition in the presence of background noise. Optogenetic stimulation of the auditory nerve might overcome this limitation as light can be conveniently confined in space. Here, we combined virus-mediated optogenetic manipulation of cochlear spiral ganglion neurons (SGNs) and microsystems engineering to establish acute multi-channel optical cochlear implant (oCI) stimulation in adult Mongolian gerbils. oCIs based on 16 microscale thin-film light-emitting diodes (μLEDs) evoked tonotopic activation of the auditory pathway with high spectral selectivity and modest power requirements in hearing and deaf gerbils. These results prove the feasibility of μLED-based oCIs for spectrally selective activation of the auditory nerve.
电子耳蜗植入物(eCIs)可部分恢复听力,并使超过 50 万名使用者能够理解言语,从而使失聪患者重新融入周围的听觉环境。然而,eCIs 的频谱选择性有限,这是由于电流在每个电极触点周围扩散,导致在背景噪声存在的情况下语音识别能力较差。听觉神经的光遗传刺激可能会克服这一限制,因为光可以方便地限制在空间内。在这里,我们结合病毒介导的耳蜗螺旋神经节神经元(SGNs)的光遗传操作和微系统工程,在成年蒙古沙鼠中建立了急性多通道光耳蜗植入物(oCI)刺激。基于 16 个微尺度薄膜发光二极管(μLEDs)的 oCIs 以高光谱选择性和适度的功率要求在听力和失聪沙鼠中诱发出听觉通路的音调激活。这些结果证明了基于 μLED 的 oCIs 用于听觉神经的光谱选择性激活的可行性。