Suppr超能文献

氮肥通过增加半干旱玉米田反硝化细菌和亚硝酸盐还原菌的丰度促进了微生物生长和一氧化氮排放。

Nitrogen fertilization promoted microbial growth and NO emissions by increasing the abundance of and denitrifiers in semiarid maize field.

作者信息

Fudjoe Setor Kwami, Li Lingling, Anwar Sumera, Shi Shangli, Xie Junhong, Wang Linlin, Xie Lihua, Yongjie Zhou

机构信息

State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China.

College of Agronomy, Gansu Agricultural University, Lanzhou, China.

出版信息

Front Microbiol. 2023 Aug 31;14:1265562. doi: 10.3389/fmicb.2023.1265562. eCollection 2023.

Abstract

Nitrous oxide (NO) emissions are a major source of gaseous nitrogen loss, causing environmental pollution. The low organic content in the Loess Plateau region, coupled with the high fertilizer demand of maize, further exacerbates these N losses. N fertilizers play a primary role in NO emissions by influencing soil denitrifying bacteria, however, the underlying microbial mechanisms that contribute to NO emissions have not been fully explored. Therefore, the research aimed to gain insights into the intricate relationships between N fertilization, soil denitrification, NO emissions, potential denitrification activity (PDA), and maize nitrogen use efficiency (NUE) in semi-arid regions. Four nitrogen (N) fertilizer rates, namely N0, N1, N2, and N3 (representing 0, 100, 200, and 300 kg ha yr., respectively) were applied to maize field. The cumulative NO emissions were 32 and 33% higher under N2 and 37 and 39% higher under N3 in the 2020 and 2021, respectively, than the N0 treatment. N fertilization rates impacted the abundance, composition, and network of soil denitrifying communities ( and ) in the bulk and rhizosphere soil. Additionally, within the community, the genera and were associated with NO emissions. Conversely, in the denitrifier, the genera , , and in the bulk and rhizosphere soil reduced NO emissions. Further analysis using both random forest and structural equation model (SEM) revealed that specific soil properties (pH, NO-N, SOC, SWC, and DON), and the presence of -harboring denitrification, were positively associated with PDA activities, respectively, and exhibited a significant association to NO emissions and PDA activities but expressed a negative effect on maize NUE. However, -harboring denitrification showed an opposite trend, suggesting different effects on these variables. Our findings suggest that N fertilization promoted microbial growth and NO emissions by increasing the abundance of and denitrifiers and altering the composition of their communities. This study provides new insights into the relationships among soil microbiome, maize productivity, NUE, and soil NO emissions in semi-arid regions.

摘要

氧化亚氮(NO)排放是气态氮损失的主要来源,会造成环境污染。黄土高原地区有机含量低,加上玉米对肥料需求高,进一步加剧了这些氮损失。氮肥通过影响土壤反硝化细菌在NO排放中起主要作用,然而,导致NO排放的潜在微生物机制尚未得到充分探索。因此,该研究旨在深入了解半干旱地区氮肥施用、土壤反硝化、NO排放、潜在反硝化活性(PDA)和玉米氮利用效率(NUE)之间的复杂关系。在玉米田施用了四种氮肥施用量,即N0、N1、N2和N3(分别代表0、100、200和300 kg ha yr.)。2020年和2021年,N2处理下的累计NO排放量分别比N0处理高32%和33%,N3处理下分别高37%和39%。氮肥施用量影响了土壤反硝化群落(和)在土壤团聚体和根际土壤中的丰度、组成和网络。此外,在群落中,属和与NO排放有关。相反,在反硝化细菌中,土壤团聚体和根际土壤中的属、和减少了NO排放。使用随机森林和结构方程模型(SEM)的进一步分析表明,特定的土壤性质(pH、NO-N、SOC、SWC和DON)以及含有的反硝化作用分别与PDA活性呈正相关,并且与NO排放和PDA活性表现出显著关联,但对玉米NUE表现出负面影响。然而,含有的反硝化作用呈现相反趋势,表明对这些变量有不同影响。我们的研究结果表明,氮肥通过增加反硝化细菌和的丰度以及改变其群落组成来促进微生物生长和NO排放。本研究为半干旱地区土壤微生物群落、玉米生产力、NUE和土壤NO排放之间的关系提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bb/10501401/7d6e37fcbcaf/fmicb-14-1265562-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验