Suppr超能文献

使用随机森林机器学习模型早期预测牙科种植体钛材料的摩擦腐蚀速率

Early Predicting Tribocorrosion Rate of Dental Implant Titanium Materials Using Random Forest Machine Learning Models.

作者信息

Ramachandran Remya Ampadi, Barão Valentim A R, Ozevin Didem, Sukotjo Cortino, Srinivasa Pai P, Mathew Mathew

机构信息

Department of Biomedical Engineering, University of Illinois at Chicago, IL, USA.

Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil.

出版信息

Tribol Int. 2023 Sep;187. doi: 10.1016/j.triboint.2023.108735. Epub 2023 Jun 26.

Abstract

Early detection and prediction of bio-tribocorrosion can avert unexpected damage that may lead to secondary revision surgery and associated risks of implantable devices. Therefore, this study sought to develop a state-of-the-art prediction technique leveraging machine learning(ML) models to classify and predict the possibility of mechanical degradation in dental implant materials. Key features considered in the study involving pure titanium and titanium-zirconium (zirconium = 5, 10, and 15 in wt%) alloys include corrosion potential, acoustic emission(AE) absolute energy, hardness, and weight-loss estimates. ML prototype models deployed confirms its suitability in tribocorrosion prediction with an accuracy above 90%. Proposed system can evolve as a continuous structural-health monitoring as well as a reliable predictive modeling technique for dental implant monitoring.

摘要

生物摩擦腐蚀的早期检测和预测可以避免可能导致二次翻修手术及植入式设备相关风险的意外损伤。因此,本研究旨在开发一种利用机器学习(ML)模型的先进预测技术,以对牙科植入材料的机械降解可能性进行分类和预测。该研究中考虑的涉及纯钛和钛锆(锆的重量百分比分别为5%、10%和15%)合金的关键特征包括腐蚀电位、声发射(AE)绝对能量、硬度和失重估计。所部署的ML原型模型证实了其在摩擦腐蚀预测中的适用性,准确率高于90%。所提出的系统可以发展成为一种用于牙科植入物监测的连续结构健康监测以及可靠的预测建模技术。

相似文献

9
Development of binary and ternary titanium alloys for dental implants.用于牙科植入物的二元和三元钛合金的开发。
Dent Mater. 2017 Nov;33(11):1244-1257. doi: 10.1016/j.dental.2017.07.013. Epub 2017 Aug 1.

本文引用的文献

6
Applications of deep learning in dentistry.深度学习在牙科中的应用。
Oral Surg Oral Med Oral Pathol Oral Radiol. 2021 Aug;132(2):225-238. doi: 10.1016/j.oooo.2020.11.003. Epub 2020 Nov 18.
9
Machine learning and treatment outcome prediction for oral cancer.机器学习和口腔癌治疗结果预测。
J Oral Pathol Med. 2020 Nov;49(10):977-985. doi: 10.1111/jop.13089. Epub 2020 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验