Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada.
Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont, USA.
Stat Med. 2023 Oct 15;42(23):4082-4110. doi: 10.1002/sim.9848. Epub 2023 Jul 14.
Evaluating the prognostic performance of candidate markers for future disease onset or progression is one of the major goals in medical research. A marker's prognostic performance refers to how well it separates patients at the high or low risk of a future disease state. Often the discriminative performance of a marker is affected by the patient characteristics (covariates). Time-dependent receiver operating characteristic (ROC) curves that ignore the informativeness of the covariates will lead to biased estimates of the accuracy parameters. We propose a time-dependent ROC curve that accounts for the informativeness of the covariates in the case of censored data. We propose inverse probability weighted (IPW) estimators for estimating the proposed accuracy parameters. We investigate the performance of the IPW estimators through simulation studies and real-life data analysis.
评估候选标志物对未来疾病发生或进展的预后性能是医学研究的主要目标之一。标志物的预后性能是指它在区分未来疾病状态高风险或低风险患者方面的表现。通常,标志物的判别性能会受到患者特征(协变量)的影响。忽略协变量信息量的时依接收器工作特征(ROC)曲线会导致准确性参数的有偏估计。我们提出了一种时依 ROC 曲线,用于在有删失数据的情况下考虑协变量的信息量。我们提出了逆概率加权(IPW)估计量来估计所提出的准确性参数。我们通过模拟研究和实际数据分析来研究 IPW 估计量的性能。