Wang Juan, Law Cheryl Suwen, Gunenthiran Satyathiran, Lim Siew Yee, Vu Khanh Nhien, Ngo Van Truc, Nielsch Kornelius, Abell Andrew D, Santos Abel
School of Chemical Engineering, The University of Adelaide, 5005 Adelaide, South Australia, Australia.
Institute for Photonics and Advanced Sensing, The University of Adelaide, 5005 Adelaide, South Australia, Australia.
ACS Appl Mater Interfaces. 2023 Oct 4;15(39):45981-45996. doi: 10.1021/acsami.3c08745. Epub 2023 Sep 18.
The distribution of oxygen and aluminum vacancies across the hemispherical barrier oxide layer (BOL) of nanoporous anodic alumina (NAA) relies intrinsically on the electric field-driven flow of electrolytic species and the incorporation of electrolyte impurities during the growth of anodic oxide through anodization. This phenomenon provides new opportunities to engineer BOL's inherited ionic current rectification (ICR) fingerprints. NAA's characteristic ICR signals are associated with the space charge density gradient across BOL and electric field-induced ion migration through hopping from vacancy to vacancy. In this study, we engineer the intrinsic space charge density gradient of the BOL of NAA under a range of anodizing potentials in hard and mild anodization regimes. Real-time characterization of the ICR fingerprints of NAA during selective etching of the BOL makes it possible to unravel the distribution pattern of vacancies through rectification signals as a function of etching direction and time. Our analysis demonstrates that the space charge density gradient varies across the BOL of NAA, where the magnitude and distribution of the space charge density gradient are revealed to be critically determined by anodizing the electrolyte, regime, and potential. This study provides a comprehensive understanding of the engineering of ion transport behavior across blind-hole NAA membranes by tuning the distribution of defects across BOL through anodization conditions. This method has the potential to be harnessed for developing nanofluidic devices with tailored ionic rectification properties for energy generation and storage and sensing applications.
纳米多孔阳极氧化铝(NAA)半球形阻挡氧化层(BOL)中氧空位和铝空位的分布本质上依赖于电场驱动的电解质物种流动以及阳极氧化生长阳极氧化物过程中电解质杂质的掺入。这一现象为设计BOL固有的离子电流整流(ICR)指纹提供了新机会。NAA的特征ICR信号与BOL上的空间电荷密度梯度以及电场诱导的离子通过从一个空位跳跃到另一个空位的迁移有关。在本研究中,我们在硬阳极氧化和温和阳极氧化条件下的一系列阳极氧化电位下,对NAA的BOL的固有空间电荷密度梯度进行了调控。在对BOL进行选择性蚀刻期间对NAA的ICR指纹进行实时表征,使得通过作为蚀刻方向和时间函数的整流信号来揭示空位的分布模式成为可能。我们的分析表明,空间电荷密度梯度在NAA的BOL上是变化的,其中空间电荷密度梯度的大小和分布被揭示由阳极氧化电解质、条件和电位严格决定。本研究通过调整阳极氧化条件下BOL上缺陷的分布,全面理解了跨盲孔NAA膜的离子传输行为工程。该方法有潜力用于开发具有定制离子整流特性的纳米流体装置,用于能量产生、存储和传感应用。