Law Cheryl Suwen, Lim Siew Yee, Abell Andrew D, Voelcker Nicolas H, Santos Abel
School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia.
Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia.
Nanomaterials (Basel). 2018 Oct 4;8(10):788. doi: 10.3390/nano8100788.
Optical sensors are a class of devices that enable the identification and/or quantification of analyte molecules across multiple fields and disciplines such as environmental protection, medical diagnosis, security, food technology, biotechnology, and animal welfare. Nanoporous photonic crystal (PC) structures provide excellent platforms to develop such systems for a plethora of applications since these engineered materials enable precise and versatile control of light⁻matter interactions at the nanoscale. Nanoporous PCs provide both high sensitivity to monitor in real-time molecular binding events and a nanoporous matrix for selective immobilization of molecules of interest over increased surface areas. Nanoporous anodic alumina (NAA), a nanomaterial long envisaged as a PC, is an outstanding platform material to develop optical sensing systems in combination with multiple photonic technologies. Nanoporous anodic alumina photonic crystals (NAA-PCs) provide a versatile nanoporous structure that can be engineered in a multidimensional fashion to create unique PC sensing platforms such as Fabry⁻Pérot interferometers, distributed Bragg reflectors, gradient-index filters, optical microcavities, and others. The effective medium of NAA-PCs undergoes changes upon interactions with analyte molecules. These changes modify the NAA-PCs' spectral fingerprints, which can be readily quantified to develop different sensing systems. This review introduces the fundamental development of NAA-PCs, compiling the most significant advances in the use of these optical materials for chemo- and biosensing applications, with a final prospective outlook about this exciting and dynamic field.
光学传感器是一类能够跨多个领域和学科识别和/或定量分析物分子的设备,这些领域包括环境保护、医学诊断、安全、食品技术、生物技术和动物福利等。纳米多孔光子晶体(PC)结构为开发适用于大量应用的此类系统提供了极佳的平台,因为这些工程材料能够在纳米尺度上实现对光与物质相互作用的精确且多功能的控制。纳米多孔光子晶体既能提供高灵敏度以实时监测分子结合事件,又能提供纳米多孔基质,以便在增加的表面积上选择性固定感兴趣的分子。长期以来被视为光子晶体的纳米多孔阳极氧化铝(NAA),是一种杰出的平台材料,可与多种光子技术结合开发光学传感系统。纳米多孔阳极氧化铝光子晶体(NAA-PCs)提供了一种多功能的纳米多孔结构,这种结构可以通过多维方式进行设计,以创建独特的光子晶体传感平台,如法布里-珀罗干涉仪、分布式布拉格反射器、梯度折射率滤波器、光学微腔等。NAA-PCs的有效介质在与分析物分子相互作用时会发生变化。这些变化改变了NAA-PCs的光谱特征,可通过对其进行量化来开发不同的传感系统。本综述介绍了NAA-PCs的基础发展情况,汇总了这些光学材料在化学和生物传感应用中最重要的进展,最后对这个令人兴奋且充满活力的领域进行了前瞻性展望。