College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China.
SAR QSAR Environ Res. 2023 Oct-Dec;34(10):789-803. doi: 10.1080/1062936X.2023.2255517. Epub 2023 Nov 3.
Deep learning (DL) methods further promote the development of quantitative structure-activity/property relationship (QSAR/QSPR) models by dealing with complex relationships between data. An acetylcholinesterase inhibitory toxicity model of ionic liquids (ILs) was established using a convolution neural network (CNN) combined with support vector machine (SVM), random forest (RF) and multilayer perceptron (MLP). A CNN model was proposed for feature self-learning and extraction of ILs. By comparing with the model results through feature engineering (FE), the model regression results based on the CNN model for feature extraction have been substantially improved. The results showed that all six models (FE-SVM, FE-RF, FE-MLP, CNN-SVM, CNN-RF, and CNN-MLP) had good prediction accuracy, but the results based on the CNN model were better. The hyperparameters of six models were optimized by grid search and the 10-fold cross validation. Compared with the existing models in the literature, the model performance has been further improved. The model could be used as an intelligent tool to guide the design or screening of low-toxicity ILs.
深度学习 (DL) 方法通过处理数据之间的复杂关系,进一步推动了定量结构-活性/性质关系 (QSAR/QSPR) 模型的发展。本研究采用卷积神经网络 (CNN) 与支持向量机 (SVM)、随机森林 (RF) 和多层感知器 (MLP) 相结合,建立了离子液体 (ILs) 的乙酰胆碱酯酶抑制毒性模型。提出了一种 CNN 模型用于 ILs 的特征自学习和提取。通过与特征工程 (FE) 的模型结果进行比较,基于 CNN 模型进行特征提取的模型回归结果得到了显著提高。结果表明,所有六个模型 (FE-SVM、FE-RF、FE-MLP、CNN-SVM、CNN-RF 和 CNN-MLP) 都具有良好的预测精度,但基于 CNN 模型的结果更好。通过网格搜索和 10 倍交叉验证对六个模型的超参数进行了优化。与文献中的现有模型相比,该模型的性能得到了进一步提高。该模型可以用作指导低毒性 ILs 设计或筛选的智能工具。