Hromadkova Lenka, Kim Chae, Haldiman Tracy, Peng Lihua, Zhu Xiongwei, Cohen Mark, de Silva Rohan, Safar Jiri G
Departments of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH, 44106, USA.
Departments of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
Cell Biosci. 2023 Sep 18;13(1):174. doi: 10.1186/s13578-023-01133-0.
Although accumulation of misfolded tau species has been shown to predict cognitive decline in patients with Alzheimer's disease (AD) and other tauopathies but with the remarkable diversity of clinical manifestations, neuropathology profiles, and time courses of disease progression remaining unexplained by current genetic data. We considered the diversity of misfolded tau conformers present in individual AD cases as an underlying driver of the phenotypic variations of AD and progressive loss of synapses.
To model the mechanism of tau propagation and synaptic toxicity of distinct tau conformers, we inoculated wild-type primary mouse neurons with structurally characterized Sarkosyl-insoluble tau isolates from the frontal cortex of six AD cases and monitored the impact for fourteen days. We analyzed the accumulation rate, tau isoform ratio, and conformational characteristics of de novo-induced tau aggregates with conformationally sensitive immunoassays, and the dynamics of synapse formation, maintenance, and their loss using a panel of pre-and post-synaptic markers.
At the same concentrations of tau, the different AD tau isolates induced accumulation of misfolded predominantly 4-repeat tau aggregates at different rates in mature neurons, and demonstrated distinct conformational characteristics corresponding to the original AD brain tau. The time-course of the formation of misfolded tau aggregates and colocalization correlated with significant loss of synapses in tau-inoculated cell cultures and the reduction of synaptic connections implicated the disruption of postsynaptic compartment as an early event.
The data obtained with mature neurons expressing physiological levels and adult isoforms of tau protein demonstrate markedly different time courses of endogenous tau misfolding and differential patterns of post-synaptic alterations. These and previous biophysical data argue for an ensemble of various misfolded tau aggregates in individual AD brains and template propagation of their homologous conformations in neurons with different rates and primarily postsynaptic interactors. Modeling tau aggregation in mature differentiated neurons provides a platform for investigating divergent molecular mechanisms of tau strain propagation and for identifying common structural features of misfolded tau and critical interactors for new therapeutic targets and approaches in AD.
尽管已表明错误折叠的tau蛋白物种的积累可预测阿尔茨海默病(AD)和其他tau蛋白病患者的认知衰退,但临床表现、神经病理学特征和疾病进展的时间进程存在显著差异,目前的基因数据尚无法解释这些差异。我们认为个体AD病例中存在的错误折叠tau构象异构体的多样性是AD表型变异和突触渐进性丧失的潜在驱动因素。
为了模拟tau蛋白传播机制和不同tau构象异构体的突触毒性,我们用来自6例AD患者额叶皮质的经结构表征的 Sarkosyl不溶性tau分离物接种野生型原代小鼠神经元,并监测14天内的影响。我们使用构象敏感免疫分析法分析了新生tau聚集体的积累速率、tau异构体比例和构象特征,并使用一组突触前和突触后标记物分析了突触形成、维持及其丧失的动力学。
在相同浓度的tau蛋白条件下,不同的AD tau分离物在成熟神经元中以不同速率诱导错误折叠的主要为4重复tau聚集体的积累,并表现出与原始AD脑tau相对应的独特构象特征。错误折叠tau聚集体形成的时间进程和共定位与接种tau的细胞培养物中突触的显著丧失相关,突触连接的减少表明突触后区室的破坏是早期事件。
用表达生理水平和成人异构体tau蛋白的成熟神经元获得的数据表明,内源性tau错误折叠的时间进程明显不同,突触后改变的模式也不同。这些以及之前的生物物理数据表明,个体AD大脑中存在多种错误折叠的tau聚集体,其同源构象在神经元中以不同速率进行模板传播,主要与突触后相互作用因子有关。在成熟分化神经元中模拟tau聚集为研究tau菌株传播的不同分子机制以及确定错误折叠tau的共同结构特征和关键相互作用因子提供了一个平台,以用于AD新的治疗靶点和方法。