Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France.
Société Herpétologique de France, Muséum National d'Histoire Naturelle, Paris, France.
J Exp Zool A Ecol Integr Physiol. 2023 Dec;339(10):1102-1115. doi: 10.1002/jez.2756. Epub 2023 Sep 18.
The colonization of novel environments requires a favorable response to conditions never, or rarely, encountered in recent evolutionary history. For example, populations colonizing upslope habitats must cope with lower atmospheric pressure at elevation, and thus reduced oxygen availability. The embryo stage in oviparous organisms is particularly susceptible, given its lack of mobility and limited gas exchange via diffusion through the eggshell and membranes. Especially little is known about responses of Lepidosaurian reptiles to reduced oxygen availability. To test the role of physiological plasticity during early development in response to high elevation hypoxia, we performed a transplant experiment with the viperine snake (Natrix maura, Linnaeus 1758). We maintained gravid females originating from low elevation populations (432 m above sea level [ASL]-normoxia) at both the elevation of origin and high elevation (2877 m ASL-extreme high elevation hypoxia; approximately 72% oxygen availability relative to sea level), then incubated egg clutches at both low and high elevation. Regardless of maternal exposure to hypoxia during gestation, embryos incubated at extreme high elevation exhibited altered developmental trajectories of cardiovascular function and metabolism across the incubation period, including a reduction in late-development egg mass. This physiological response may have contributed to the maintenance of similar incubation duration, hatching success, and hatchling body size compared to embryos incubated at low elevation. Nevertheless, after being maintained in hypoxia, juveniles exhibit reduced carbon dioxide production relative to oxygen consumption, suggesting altered energy pathways compared to juveniles maintained in normoxia. These findings highlight the role of physiological plasticity in maintaining rates of survival and fitness-relevant phenotypes in novel environments.
新环境的殖民化需要对近期进化历史中从未或很少遇到的条件作出有利的响应。例如,在向上坡生境殖民的种群必须应对海拔升高时的低气压,从而减少氧气的可利用性。卵生动物的胚胎期尤其容易受到影响,因为其缺乏运动能力,通过蛋壳和膜进行扩散的气体交换也有限。特别是关于蜥蜴类爬行动物对低氧可用性的反应,人们知之甚少。为了检验在高海拔缺氧条件下早期发育中生理可塑性的作用,我们用毒蛇(Natrix maura,Linnaeus 1758)进行了移植实验。我们将来自低海拔种群(海拔 432 米[海平面以上]-常氧)的怀孕雌蛇保持在其起源的海拔高度和高海拔(海拔 2877 米[海平面以上]-极端高海拔缺氧;相对海平面氧气可用性约为 72%),然后在低海拔和高海拔孵育卵群。无论母体在妊娠期间是否暴露于缺氧,在极端高海拔孵育的胚胎在整个孵育期间表现出心血管功能和代谢的发育轨迹发生改变,包括晚期胚胎卵质量减少。这种生理反应可能有助于维持与在低海拔孵育的胚胎相似的孵育时间、孵化成功率和幼体体型。尽管如此,在维持在缺氧条件下后,与在常氧条件下维持的幼体相比,幼体的二氧化碳产生量相对于氧气消耗减少,表明与在常氧条件下维持的幼体相比,能量途径发生了改变。这些发现强调了生理可塑性在维持在新环境中生存和与适应度相关表型的速率方面的作用。