Suppr超能文献

基于乳腺 X 光片的深度学习与传统乳腺癌风险模型在接受补充性 MRI 筛查患者中的诊断准确性比较。

Comparison of the Diagnostic Accuracy of Mammogram-based Deep Learning and Traditional Breast Cancer Risk Models in Patients Who Underwent Supplemental Screening with MRI.

机构信息

From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114-2696.

出版信息

Radiology. 2023 Sep;308(3):e223077. doi: 10.1148/radiol.223077.

Abstract

Background Access to supplemental screening breast MRI is determined using traditional risk models, which are limited by modest predictive accuracy. Purpose To compare the diagnostic accuracy of a mammogram-based deep learning (DL) risk assessment model to that of traditional breast cancer risk models in patients who underwent supplemental screening with MRI. Materials and Methods This retrospective study included consecutive patients undergoing breast cancer screening MRI from September 2017 to September 2020 at four facilities. Risk was assessed using the Tyrer-Cuzick (TC) and National Cancer Institute Breast Cancer Risk Assessment Tool (BCRAT) 5-year and lifetime models as well as a DL 5-year model that generated a risk score based on the most recent screening mammogram. A risk score of 1.67% or higher defined increased risk for traditional 5-year models, a risk score of 20% or higher defined high risk for traditional lifetime models, and absolute scores of 2.3 or higher and 6.6 or higher defined increased and high risk, respectively, for the DL model. Model accuracy metrics including cancer detection rate (CDR) and positive predictive values (PPVs) (PPV of abnormal findings at screening [PPV1], PPV of biopsies recommended [PPV2], and PPV of biopsies performed [PPV3]) were compared using logistic regression models. Results This study included 2168 women who underwent 4247 high-risk screening MRI examinations (median age, 54 years [IQR, 48-60 years]). CDR (per 1000 examinations) was higher in patients at high risk according to the DL model (20.6 [95% CI: 11.8, 35.6]) than according to the TC (6.0 [95% CI: 2.9, 12.3]; < .01) and BCRAT (6.8 [95% CI: 2.9, 15.8]; = .04) lifetime models. PPV1, PPV2, and PPV3 were higher in patients identified as high risk by the DL model (PPV1, 14.6%; PPV2, 32.4%; PPV3, 36.4%) than those identified as high risk with the TC (PPV1, 5.0%; PPV2, 12.7%; PPV3, 13.5%; value range, .02-.03) and BCRAT (PPV1, 5.5%; PPV2, 11.1%; PPV3, 12.5%; value range, .02-.05) lifetime models. Conclusion Patients identified as high risk by a mammogram-based DL risk assessment model showed higher CDR at breast screening MRI than patients identified as high risk with traditional risk models. © RSNA, 2023 See also the editorial by Bae in this issue.

摘要

背景 辅助性筛查乳房 MRI 的检查机会是根据传统风险模型来决定的,而这些模型的预测准确性有限。目的 旨在比较基于乳腺 X 线摄影的深度学习(DL)风险评估模型与传统乳腺癌风险模型在接受 MRI 辅助性筛查患者中的诊断准确性。

材料与方法 本回顾性研究纳入了 2017 年 9 月至 2020 年 9 月在 4 家机构接受乳腺癌筛查 MRI 的连续患者。使用 Tyrer-Cuzick(TC)和美国国家癌症研究所乳腺癌风险评估工具(BCRAT)5 年和终生模型以及基于最近一次筛查乳腺 X 线摄影的 DL 5 年模型来评估风险。传统 5 年模型中,风险评分≥1.67%定义为高风险;传统终生模型中,风险评分≥20%定义为高风险;而对于 DL 模型,风险评分≥2.3 和≥6.6 分别定义为增加风险和高风险。使用逻辑回归模型比较包括癌症检出率(CDR)和阳性预测值(PPV)[筛查中异常发现的 PPV(PPV1)、推荐活检的 PPV(PPV2)和实施活检的 PPV(PPV3)]在内的模型准确性指标。

结果 这项研究纳入了 2168 名接受了 4247 例高风险筛查 MRI 检查的女性(中位年龄,54 岁[四分位数间距,48-60 岁])。根据 DL 模型,高风险患者的 CDR(每 1000 例检查)(20.6[95%CI:11.8,35.6])高于 TC(6.0[95%CI:2.9,12.3]; <.01)和 BCRAT(6.8[95%CI:2.9,15.8]; =.04)终生模型。根据 DL 模型,PPV1、PPV2 和 PPV3 在被识别为高风险的患者中更高(PPV1,14.6%;PPV2,32.4%;PPV3,36.4%),高于 TC(PPV1,5.0%;PPV2,12.7%;PPV3,13.5%; 值范围,.02-.03)和 BCRAT(PPV1,5.5%;PPV2,11.1%;PPV3,12.5%; 值范围,.02-.05)终生模型。

结论 与传统风险模型相比,基于乳腺 X 线摄影的 DL 风险评估模型识别为高风险的患者在乳腺筛查 MRI 中表现出更高的 CDR。

© 2023 RSNA. 本研究参见本期社论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验