Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany.
Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, United Kingdom.
Methods Appl Fluoresc. 2023 Oct 12;12(1):012001. doi: 10.1088/2050-6120/acfb58.
PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate of/photoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule. In this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turning PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.
PIFE 最初是作为蛋白质诱导荧光增强(protein-induced fluorescence enhancement)的缩写使用的,它是指当荧光团(如菁染料)与蛋白质相互作用时观察到的荧光增强。这种荧光增强是由于速率变化/光异构化。现在很明显,这种机制通常适用于与任何生物分子的相互作用。在这篇综述中,我们建议根据其基本工作原理将 PIFE 重新命名为光异构化相关的荧光增强,同时保持 PIFE 缩写不变。我们讨论了菁染料荧光团的光化学、PIFE 的机制、它的优点和局限性,以及最近将 PIFE 转化为定量分析的方法。我们概述了它目前在不同生物分子中的应用,并讨论了潜在的未来用途,包括研究蛋白质-蛋白质相互作用、蛋白质-配体相互作用以及生物分子的构象变化。