Suppr超能文献

通过碳纳米管的界面生长在铁 - 氮 - 碳中扩展导电通道,实现高效氧还原反应电催化且金属损失最小。

Extending conducting channels in Fe-N-C by interfacial growth of CNTs with minimal metal loss for efficient ORR electrocatalysis.

作者信息

Garg Reeya, Jaiswal Mohit, Kumar Kaustubh, Kaur Komalpreet, Rawat Bhawna, Kailasam Kamalakannan, Gautam Ujjal K

机构信息

Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali 140306, Punjab, India.

Advanced Functional Nanomaterials, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Manauli, SAS Nagar, 140306 Mohali, Punjab, India.

出版信息

Nanoscale. 2023 Oct 5;15(38):15590-15599. doi: 10.1039/d3nr02706f.

Abstract

Achieving a high electrocatalytic performance using a completely metal-free electrocatalyst, preferably based on only carbonaceous materials, remains a challenge. Alternatively, an efficient composite of a carbon nanostructure and a non-noble metal with minimum dependence on a metal holds immense potential. Although single-atom catalysis brings superior performance, its complex synthetic strategy limits its large-scale implementation. Previous investigation has shown that atomic dispersion (Fe-N-C) is accompanied by higher metal-loss compared to nanoparticle formation (Fe-NPs-N-C). Therefore, to achieve minimum metal loss, we first incorporated iron nanoparticles (Fe NPs) to N-doped carbon (N-C) and then exposed them to a cheap carbon source, melamine at high temperature, resulting in the growth of carbon nanotubes (CNTs) catalysed by those Fe NPs loaded on N-C (Fe-NPs-N-C). Thermogravimetric analysis showed that the metal-retention in the composite is higher than that in the bare carbon nanotube and even the atomically dispersed Fe-active sites on N-C. The composite material (Fe-NPs-N-C/CNT) shows a high half-wave potential (0.89 V RHE) which is superior to that of commercial Pt/C towards the oxygen reduction reaction (ORR). The enhanced activity is attributed to the synergistic effect of high conductivity of CNTs and active Fe-sites as the composite exceeds the individual electrocatalytic performance shown by Fe-CNTs & Fe-NPs-N-C, and even that of atomically dispersed Fe-active sites on N-C.

摘要

使用完全无金属的电催化剂,最好仅基于碳质材料来实现高电催化性能仍然是一项挑战。另外,碳纳米结构与非贵金属的高效复合材料,对金属的依赖性最小,具有巨大的潜力。尽管单原子催化具有卓越的性能,但其复杂的合成策略限制了其大规模应用。先前的研究表明,与纳米颗粒形成(Fe-NPs-N-C)相比,原子分散(Fe-N-C)伴随着更高的金属损失。因此,为了实现最小的金属损失,我们首先将铁纳米颗粒(Fe NPs)掺入氮掺杂碳(N-C)中,然后在高温下将它们暴露于廉价的碳源三聚氰胺中,导致负载在N-C上的那些Fe NPs催化碳纳米管(CNTs)的生长(Fe-NPs-N-C)。热重分析表明,复合材料中的金属保留率高于裸碳纳米管,甚至高于N-C上原子分散的Fe活性位点。复合材料(Fe-NPs-N-C/CNT)显示出高半波电位(0.89 V RHE),在氧还原反应(ORR)方面优于商业Pt/C。活性增强归因于CNTs的高导电性和活性Fe位点的协同效应,因为该复合材料超过了Fe-CNTs和Fe-NPs-N-C所显示的单独电催化性能,甚至超过了N-C上原子分散的Fe活性位点的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验