Suppr超能文献

基于近红外成像光谱技术进行质量评估,提高作物种子合格率的最后百分之一。

Last-percent improvement in eligibility rates of crop seeds based on quality evaluation using near-infrared imaging spectrometry.

机构信息

Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.

Tokita Seed Co., Ltd., Saitama, Japan.

出版信息

PLoS One. 2023 Sep 20;18(9):e0291105. doi: 10.1371/journal.pone.0291105. eCollection 2023.

Abstract

As the world population continues to grow, the need for high-quality crop seeds that promise stable food production is increasing. Conversely, excessive demand for high quality is causing "seed loss and waste" due to slight shortfalls in eligibility rates. In this study, we applied near-infrared imaging spectrometry combined with machine learning techniques to evaluate germinability and paternal haplotype in crop seeds from 6 species and 8 cultivars. Candidate discriminants for quality evaluation were derived by linear sparse modeling using the seed reflectance spectra as explanatory variables. To systematically proceed with model selection, we defined the sorting condition where the recovery rate of seeds matches the initial eligibility rate (iP) as "standard condition". How much the eligibility rate after sorting (P) increases from iP under this condition offers a reasonable criterion for ranking candidate models. Moreover, the model performance under conditions with adjusted discrimination strength was verified using a metric "relative precision" (rP) defined as (P-iP)/(1-iP). Because rP, compared to precision (= P), is less dependent on iP in relation to recall (R), i.e., recovery rate of eligible seeds, the rP-R curve and area under the curve also offer useful criteria for spotting better discriminant models. We confirmed that the batches of seeds given higher discriminant scores by the models selected with reference to these criteria were more enriched with eligible seeds. The method presented can be readily implemented in developing a sorting device that enables "last-percent improvement" in eligibility rates of crop seeds.

摘要

随着世界人口的持续增长,对保证稳定粮食产量的高质量作物种子的需求也在不断增加。然而,由于对高质量的过度需求,导致资格率稍有不足就出现了“种子损耗和浪费”的情况。在本研究中,我们应用近红外成像光谱学结合机器学习技术,评估了来自 6 个物种和 8 个品种的作物种子的发芽率和父本单倍型。使用种子反射率光谱作为解释变量,通过线性稀疏建模得到了用于质量评估的候选判别变量。为了系统地进行模型选择,我们定义了一种分类条件,即种子回收率与初始资格率(iP)匹配的条件为“标准条件”。在这种条件下,排序后(P)的资格率相对于 iP 增加的幅度为候选模型的排序提供了一个合理的标准。此外,我们还使用一个名为“相对精度”(rP)的度量标准来验证在调整判别力条件下模型的性能,rP 定义为(P-iP)/(1-iP)。与精度(=P)相比,rP 与召回率(R)的关系更小,即合格种子的回收率,因此 rP-R 曲线和曲线下面积也为发现更好的判别模型提供了有用的标准。我们证实,根据这些标准选择的模型所给出的判别分数较高的批次种子,其中合格种子的含量更为丰富。本研究提出的方法可用于开发一种分选装置,实现作物种子资格率的“最后百分之一提升”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bbb/10511137/d40422cbe7e7/pone.0291105.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验