Suppr超能文献

一种用于深度神经网络时间序列预测的自适应嵌入方法。

An adaptive embedding procedure for time series forecasting with deep neural networks.

作者信息

Succetti Federico, Rosato Antonello, Panella Massimo

机构信息

Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy.

出版信息

Neural Netw. 2023 Oct;167:715-729. doi: 10.1016/j.neunet.2023.08.051. Epub 2023 Sep 9.

Abstract

Nowadays, solving time series prediction problems is an open and challenging task. Many solutions are based on the implementation of deep neural architectures, which are able to analyze the structure of the time series and to carry out the prediction. In this work, we present a novel deep learning scheme based on an adaptive embedding mechanism. The latter is exploited to extract a compressed representation of the input time series that is used for the subsequent forecasting. The proposed model is based on a two-layer bidirectional Long Short-Term Memory network, where the first layer performs the adaptive embedding and the second layer acts as a predictor. The performances of the proposed forecasting scheme are compared with several models in two different scenarios, considering both well-known time series and real-life application cases. The experimental results show the accuracy and the flexibility of the proposed approach, which can be used as a prediction tool for any actual application.

摘要

如今,解决时间序列预测问题是一项开放且具有挑战性的任务。许多解决方案基于深度神经架构的实现,这些架构能够分析时间序列的结构并进行预测。在这项工作中,我们提出了一种基于自适应嵌入机制的新型深度学习方案。利用该机制提取输入时间序列的压缩表示,用于后续预测。所提出的模型基于两层双向长短期记忆网络,其中第一层执行自适应嵌入,第二层作为预测器。在两种不同场景下,将所提出的预测方案的性能与几种模型进行比较,同时考虑了知名时间序列和实际应用案例。实验结果表明了所提方法的准确性和灵活性,可作为任何实际应用的预测工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验