Suppr超能文献

基于深度学习 Bi-LSTM 方法的河流水质评估:预测与验证。

Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.

机构信息

Guru Gobind Singh Indraprastha University, West Patel Nagar, New Delhi, 110008, India.

CSE, GGSIPU, AIACTR, Krishna Nagar Road Chacha Nahru Bal Chikitsalaya, Geeta Colony, Delhi, New Delhi, 110031, India.

出版信息

Environ Sci Pollut Res Int. 2022 Feb;29(9):12875-12889. doi: 10.1007/s11356-021-13875-w. Epub 2021 May 14.

Abstract

Water is a prime necessity for the survival and sustenance of all living beings. Over the past few years, the water quality of rivers is adversely affected due to harmful wastes and pollutants. This ever-increasing water pollution is a big matter of concern as it deteriorating the water quality, making it unfit for any type of use. Recently, water quality modelling using machine learning techniques has generated a lot of interest and can be very beneficial in ecological and water resources management. However, they suffer many times from high computational complexity and high prediction error. The good performance of a deep neural network like long short-term memory network (LSTM) has been exploited for the time-series data. In this paper, a deep learning-based Bi-LSTM model (DLBL-WQA) is introduced to forecast the water quality factors of Yamuna River, India. The existing schemes do not perform missing value imputation and focus only on the learning process without including a loss function pertaining to training error. The proposed model shows a novel scheme which includes missing value imputation in the first phase, the second phase generates the feature maps from the given input data, the third phase includes a Bi-LSTM architecture to improve the learning process, and finally, an optimized loss function is applied to reduce the training error. Thus, the proposed model improves forecasting accuracy. Data comprising monthly samples of different water quality factors were collected for 6 years (2013-2019) at several locations in the Delhi region. Experimental results reveal that predicted values of the model and the actual values were in a close agreement and could reveal a future trend. The performance of our model was compared with various state of the art techniques like SVR, random forest, artificial neural network, LSTM, and CNN-LSTM. To check the accuracy, metrics like root mean square errors (RMSE), the mean absolute error (MAE), mean square error (MSE), and mean absolute percentage error (MAPE) have been used. Experimental analysis is carried out by measuring the COD and BOD levels. COD analysis reveals the MSE, RMSE, MAE, and MAPE values as 0.015, 0.117, 0.115, and 20.32, respectively, for the Palla region. Similarly, BOD analysis indicates the MSE, RMSE, MAE, and MAPE values as 0.107, 0.108, 0.124, and 18.22, respectively. A comparative analysis reveals that the proposed model outperforms all other models in terms of the best forecasting accuracy and lowest error rates.

摘要

水是所有生物生存和维持生命的基本必需品。在过去的几年中,由于有害废物和污染物的存在,河流的水质受到了不利影响。这种日益严重的水污染是一个令人担忧的大问题,因为它会使水质恶化,使其不适合任何类型的使用。最近,使用机器学习技术进行水质建模引起了很多关注,并且在生态和水资源管理中非常有益。但是,它们经常受到高计算复杂性和高预测误差的困扰。长短期记忆网络(LSTM)等深度学习神经网络的良好性能已被用于时间序列数据。在本文中,引入了一种基于深度学习的双向 LSTM 模型(DLBL-WQA)来预测印度亚穆纳河的水质因子。现有方案不执行缺失值插补,仅专注于学习过程,而不包括与训练误差相关的损失函数。所提出的模型显示了一种新颖的方案,该方案在第一阶段包括缺失值插补,第二阶段从给定的输入数据生成特征图,第三阶段包括双向 LSTM 架构以改善学习过程,最后,应用优化的损失函数来减少训练误差。因此,该模型提高了预测精度。在德里地区的几个地点收集了 6 年(2013-2019 年)的不同水质因子的每月样本数据。实验结果表明,模型的预测值与实际值非常吻合,可以揭示未来的趋势。将我们的模型与 SVR、随机森林、人工神经网络、LSTM 和 CNN-LSTM 等各种最先进的技术进行了比较。为了检查准确性,使用了均方根误差(RMSE)、平均绝对误差(MAE)、均方误差(MSE)和平均绝对百分比误差(MAPE)等指标。通过测量 COD 和 BOD 水平进行了实验分析。COD 分析显示,Palla 地区的 MSE、RMSE、MAE 和 MAPE 值分别为 0.015、0.117、0.115 和 20.32。同样,BOD 分析表明,MSE、RMSE、MAE 和 MAPE 值分别为 0.107、0.108、0.124 和 18.22。比较分析表明,在所提出的模型中,最佳预测精度和最低误差率方面,该模型的性能优于所有其他模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验