Suppr超能文献

基于深度塔网络的多源温度高效预测

Deep Tower Networks for Efficient Temperature Forecasting from Multiple Data Sources.

机构信息

Norwegian Meteorological Institute, 0313 Oslo, Norway.

OsloMet, 0167 Oslo, Norway.

出版信息

Sensors (Basel). 2022 Apr 6;22(7):2802. doi: 10.3390/s22072802.

Abstract

Many data related problems involve handling multiple data streams of different types at the same time. These problems are both complex and challenging, and researchers often end up using only one modality or combining them via a late fusion based approach. To tackle this challenge, we develop and investigate the usefulness of a novel deep learning method called tower networks. This method is able to learn from multiple input data sources at once. We apply the tower network to the problem of short-term temperature forecasting. First, we compare our method to a number of meteorological baselines and simple statistical approaches. Further, we compare the tower network with two core network architectures that are often used, namely the convolutional neural network (CNN) and convolutional long short-term memory (convLSTM). The methods are compared for the task of weather forecasting performance, and the deep learning methods are also compared in terms of memory usage and training time. The tower network performs well in comparison both with the meteorological baselines, and with the other core architectures. Compared with the state-of-the-art operational Norwegian weather forecasting service, yr.no, the tower network has an overall 11% smaller root mean squared forecasting error. For the core architectures, the tower network documents competitive performance and proofs to be more robust compared to CNN and convLSTM models.

摘要

许多与数据相关的问题都涉及同时处理多种不同类型的数据流。这些问题既复杂又具有挑战性,研究人员通常最终只使用一种模态,或者通过基于后期融合的方法将它们结合起来。为了解决这一挑战,我们开发并研究了一种名为塔式网络的新型深度学习方法的有效性。这种方法能够同时从多个输入数据源中学习。我们将塔式网络应用于短期温度预测问题。首先,我们将我们的方法与许多气象基线和简单的统计方法进行了比较。此外,我们还将塔式网络与两种常用的核心网络架构(卷积神经网络(CNN)和卷积长短期记忆(convLSTM))进行了比较。方法在天气预报性能方面进行了比较,并且还比较了深度学习方法在内存使用和训练时间方面的情况。塔式网络在与气象基线和其他核心架构的比较中表现良好。与最先进的挪威天气预报服务 yr.no 相比,塔式网络的整体均方根预测误差小 11%。对于核心架构,塔式网络证明了与 CNN 和 convLSTM 模型相比具有竞争力的性能和更强的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9002847/48d3e145a895/sensors-22-02802-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验