Soh Wei Kwek, Rajapakse Jagath C
College of Computing and Data Science, Nanyang Technological University, Singapore, 639798, Singapore.
Sci Rep. 2025 Jun 5;15(1):19783. doi: 10.1038/s41598-025-04819-2.
We extend the Hybrid Unet Transformer (HUT) foundation model, which combines the advantages of the CNN and Transformer architectures with a noisy self-supervised approach, and demonstrate it in an ischemic stroke lesion segmentation task. We introduce a self-supervised approach using a noise anchor and show that it can perform better than a supervised approach under a limited amount of annotated data. We supplement our pre-training process with an additional unannotated CT perfusion dataset to validate our approach. Compared to the supervised version, the noisy self-supervised HUT (HUT-NSS) outperforms its counterpart by a margin of 2.4% in terms of dice score. HUT-NSS, on average, gained a further margin of 7.2% dice score and 28.1% Hausdorff Distance score over the state-of-the-art network USSLNet on the CT perfusion scans of the Ischemic Stroke Lesion Segmentation (ISLES2018) dataset. In limited annotated data sets, we show that HUT-NSS gained 7.87% of the dice score over USSLNet when we used 50% of the annotated data sets for training. HUT-NSS gained 7.47% of the dice score over USSLNet when we used 10% of the annotated datasets, and HUT-NSS gained 5.34% of the dice score over USSLNet when we used 1% of the annotated datasets for training. The code is available at https://github.com/vicsohntu/HUTNSS_CT .
我们扩展了混合Unet Transformer(HUT)基础模型,该模型将卷积神经网络(CNN)和Transformer架构的优势与噪声自监督方法相结合,并在缺血性中风病变分割任务中进行了演示。我们引入了一种使用噪声锚点的自监督方法,并表明在有限的标注数据量下,它的性能优于监督方法。我们用一个额外的未标注CT灌注数据集补充我们的预训练过程,以验证我们的方法。与监督版本相比,噪声自监督HUT(HUT-NSS)在骰子系数方面比其对应版本高出2.4%。在缺血性中风病变分割(ISLES2018)数据集的CT灌注扫描中,HUT-NSS平均比最先进的网络USSLNet在骰子系数得分上进一步提高了7.2%,在豪斯多夫距离得分上提高了28.1%。在有限的标注数据集中,我们表明当我们使用50%的标注数据集进行训练时,HUT-NSS比USSLNet的骰子系数得分高出7.87%。当我们使用10%的标注数据集时,HUT-NSS比USSLNet的骰子系数得分高出7.47%,当我们使用1%的标注数据集进行训练时,HUT-NSS比USSLNet的骰子系数得分高出5.34%。代码可在https://github.com/vicsohntu/HUTNSS_CT获取。
Front Neurosci. 2023-11-30
Heliyon. 2023-11-17
Quant Imaging Med Surg. 2024-12-5
Comput Methods Programs Biomed. 2024-9
Front Neurosci. 2023-11-30
Heliyon. 2023-11-17
Comput Med Imaging Graph. 2023-10
IEEE Trans Pattern Anal Mach Intell. 2023-7
Domain Adapt Represent Transf (2022). 2022-9
Nat Commun. 2021-10-8
J Med Imaging Radiat Oncol. 2021-8