文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于缺血性中风分割的噪声诱导自监督混合UNet变压器,数据标注有限。

Noise-induced self-supervised hybrid UNet transformer for ischemic stroke segmentation with limited data annotations.

作者信息

Soh Wei Kwek, Rajapakse Jagath C

机构信息

College of Computing and Data Science, Nanyang Technological University, Singapore, 639798, Singapore.

出版信息

Sci Rep. 2025 Jun 5;15(1):19783. doi: 10.1038/s41598-025-04819-2.


DOI:10.1038/s41598-025-04819-2
PMID:40473826
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12141671/
Abstract

We extend the Hybrid Unet Transformer (HUT) foundation model, which combines the advantages of the CNN and Transformer architectures with a noisy self-supervised approach, and demonstrate it in an ischemic stroke lesion segmentation task. We introduce a self-supervised approach using a noise anchor and show that it can perform better than a supervised approach under a limited amount of annotated data. We supplement our pre-training process with an additional unannotated CT perfusion dataset to validate our approach. Compared to the supervised version, the noisy self-supervised HUT (HUT-NSS) outperforms its counterpart by a margin of 2.4% in terms of dice score. HUT-NSS, on average, gained a further margin of 7.2% dice score and 28.1% Hausdorff Distance score over the state-of-the-art network USSLNet on the CT perfusion scans of the Ischemic Stroke Lesion Segmentation (ISLES2018) dataset. In limited annotated data sets, we show that HUT-NSS gained 7.87% of the dice score over USSLNet when we used 50% of the annotated data sets for training. HUT-NSS gained 7.47% of the dice score over USSLNet when we used 10% of the annotated datasets, and HUT-NSS gained 5.34% of the dice score over USSLNet when we used 1% of the annotated datasets for training. The code is available at https://github.com/vicsohntu/HUTNSS_CT .

摘要

我们扩展了混合Unet Transformer(HUT)基础模型,该模型将卷积神经网络(CNN)和Transformer架构的优势与噪声自监督方法相结合,并在缺血性中风病变分割任务中进行了演示。我们引入了一种使用噪声锚点的自监督方法,并表明在有限的标注数据量下,它的性能优于监督方法。我们用一个额外的未标注CT灌注数据集补充我们的预训练过程,以验证我们的方法。与监督版本相比,噪声自监督HUT(HUT-NSS)在骰子系数方面比其对应版本高出2.4%。在缺血性中风病变分割(ISLES2018)数据集的CT灌注扫描中,HUT-NSS平均比最先进的网络USSLNet在骰子系数得分上进一步提高了7.2%,在豪斯多夫距离得分上提高了28.1%。在有限的标注数据集中,我们表明当我们使用50%的标注数据集进行训练时,HUT-NSS比USSLNet的骰子系数得分高出7.87%。当我们使用10%的标注数据集时,HUT-NSS比USSLNet的骰子系数得分高出7.47%,当我们使用1%的标注数据集进行训练时,HUT-NSS比USSLNet的骰子系数得分高出5.34%。代码可在https://github.com/vicsohntu/HUTNSS_CT获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab79/12141671/91cb80b64fc8/41598_2025_4819_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab79/12141671/acc614e565e0/41598_2025_4819_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab79/12141671/44831d732fe5/41598_2025_4819_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab79/12141671/d09d271cb4c0/41598_2025_4819_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab79/12141671/85a7cb8f56b9/41598_2025_4819_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab79/12141671/91cb80b64fc8/41598_2025_4819_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab79/12141671/acc614e565e0/41598_2025_4819_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab79/12141671/44831d732fe5/41598_2025_4819_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab79/12141671/d09d271cb4c0/41598_2025_4819_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab79/12141671/85a7cb8f56b9/41598_2025_4819_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab79/12141671/91cb80b64fc8/41598_2025_4819_Fig4_HTML.jpg

相似文献

[1]
Noise-induced self-supervised hybrid UNet transformer for ischemic stroke segmentation with limited data annotations.

Sci Rep. 2025-6-5

[2]
Hybrid UNet transformer architecture for ischemic stoke segmentation with MRI and CT datasets.

Front Neurosci. 2023-11-30

[3]
HUT: Hybrid UNet transformer for brain lesion and tumour segmentation.

Heliyon. 2023-11-17

[4]
Image-level supervision and self-training for transformer-based cross-modality tumor segmentation.

Med Image Anal. 2024-10

[5]
TAC-UNet: transformer-assisted convolutional neural network for medical image segmentation.

Quant Imaging Med Surg. 2024-12-5

[6]
QMaxViT-Unet+: A query-based MaxViT-Unet with edge enhancement for scribble-supervised segmentation of medical images.

Comput Biol Med. 2025-3

[7]
Uncertainty-guided cross learning via CNN and transformer for semi-supervised honeycomb lung lesion segmentation.

Phys Med Biol. 2023-12-11

[8]
Hybrid CNN-Transformer Network With Circular Feature Interaction for Acute Ischemic Stroke Lesion Segmentation on Non-Contrast CT Scans.

IEEE Trans Med Imaging. 2024-6

[9]
Cross-shaped windows transformer with self-supervised pretraining for clinically significant prostate cancer detection in bi-parametric MRI.

Med Phys. 2025-2

[10]
URCA: Uncertainty-based region clipping algorithm for semi-supervised medical image segmentation.

Comput Methods Programs Biomed. 2024-9

本文引用的文献

[1]
Self-supervised MRI denoising: leveraging Stein's unbiased risk estimator and spatially resolved noise maps.

Sci Rep. 2023-12-19

[2]
Hybrid UNet transformer architecture for ischemic stoke segmentation with MRI and CT datasets.

Front Neurosci. 2023-11-30

[3]
HUT: Hybrid UNet transformer for brain lesion and tumour segmentation.

Heliyon. 2023-11-17

[4]
Self-supervised-RCNN for medical image segmentation with limited data annotation.

Comput Med Imaging Graph. 2023-10

[5]
Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging.

Nat Biomed Eng. 2023-6

[6]
A Unified Visual Information Preservation Framework for Self-supervised Pre-Training in Medical Image Analysis.

IEEE Trans Pattern Anal Mach Intell. 2023-7

[7]
Benchmarking and Boosting Transformers for Medical Image Classification.

Domain Adapt Represent Transf (2022). 2022-9

[8]
Annotation-efficient deep learning for automatic medical image segmentation.

Nat Commun. 2021-10-8

[9]
A review of medical image data augmentation techniques for deep learning applications.

J Med Imaging Radiat Oncol. 2021-8

[10]
Predicting Infarct Core From Computed Tomography Perfusion in Acute Ischemia With Machine Learning: Lessons From the ISLES Challenge.

Stroke. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索