Suppr超能文献

颗粒物对心血管疾病和心血管生物标志物的因果关系。

Causality of particulate matter on cardiovascular diseases and cardiovascular biomarkers.

机构信息

Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China.

Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.

出版信息

Front Public Health. 2023 Sep 1;11:1201479. doi: 10.3389/fpubh.2023.1201479. eCollection 2023.

Abstract

BACKGROUND

Previous observational studies have shown that the prevalence of cardiovascular diseases (CVDs) is related to particulate matter (PM). However, given the methodological limitations of conventional observational research, it is difficult to identify causality conclusively. To explore the causality of PM on CVDs and cardiovascular biomarkers, we conducted a Mendelian randomization (MR) analysis.

METHOD

In this study, we obtained summary-level data for CVDs and cardiovascular biomarkers including atrial fibrillation (AF), heart failure (HF), myocardial infarction (MI), ischemic stroke (IS), stroke subtypes, body mass index (BMI), lipid traits, fasting glucose, fasting insulin, and blood pressure from several large genome-wide association studies (GWASs). Then we used two-sample MR to assess the causality of PM on CVDs and cardiovascular biomarkers, 16 single nucleotide polymorphisms (SNPs) for PM2.5 and 6 SNPs for PM10 were obtained from UK Biobank participants. Inverse variance weighting (IVW) analyses under the fixed effects model were used as the main analytical method to calculate MR Estimates, followed by multiple sensitivity analyses to confirm the robustness of the results.

RESULTS

Our study revealed increases in PM2.5 concentration were significantly related to a higher risk of MI (odds ratio (OR), 2.578; 95% confidence interval (CI), 1.611-4.127; = 7.920 × 10). Suggestive evidence was found between PM10 concentration and HF (OR, 2.015; 95% CI, 1.082-3.753; = 0.027) and IS (OR, 2.279; 95% CI,1.099-4.723; p = 0.027). There was no evidence for an effect of PM concentration on other CVDs. Furthermore, PM2.5 concentration increases were significantly associated with increases in triglyceride (TG) (OR, 1.426; 95% CI, 1.133-1.795; = 2.469 × 10) and decreases in high-density lipoprotein cholesterol (HDL-C) (OR, 0.779; 95% CI, 0.615-0.986; = 0.038). The PM10 concentration increases were also closely related to the decreases in HDL-C (OR, 0.563; 95% CI, 0.366-0.865; = 8.756 × 10). We observed no causal effect of PM on other cardiovascular biomarkers.

CONCLUSION

At the genetic level, our study suggested the causality of PM2.5 on MI, TG, as well HDL-C, and revealed the causality of PM10 on HF, IS, and HDL-C. Our findings indicated the need for continued improvements in air pollution abatement for CVDs prevention.

摘要

背景

先前的观察性研究表明,心血管疾病(CVDs)的患病率与颗粒物(PM)有关。然而,鉴于常规观察性研究的方法学局限性,很难确定因果关系。为了探索 PM 对 CVDs 和心血管生物标志物的因果关系,我们进行了孟德尔随机化(MR)分析。

方法

在这项研究中,我们从多个大型全基因组关联研究(GWASs)中获得了 CVDs 和心血管生物标志物的汇总水平数据,包括心房颤动(AF)、心力衰竭(HF)、心肌梗死(MI)、缺血性中风(IS)、中风亚型、体重指数(BMI)、血脂特征、空腹血糖、空腹胰岛素和血压。然后,我们使用两样本 MR 来评估 PM 对 CVDs 和心血管生物标志物的因果关系,从 UK Biobank 参与者中获得了 16 个 PM2.5 单核苷酸多态性(SNP)和 6 个 PM10 SNP。使用固定效应模型下的逆方差加权(IVW)分析作为主要分析方法来计算 MR 估计值,然后进行多种敏感性分析以确认结果的稳健性。

结果

我们的研究表明,PM2.5 浓度的升高与 MI 的风险增加显著相关(比值比(OR),2.578;95%置信区间(CI),1.611-4.127;p=7.920×10)。在 PM10 浓度与 HF(OR,2.015;95%CI,1.082-3.753;p=0.027)和 IS(OR,2.279;95%CI,1.099-4.723;p=0.027)之间发现了提示性证据。没有证据表明 PM 浓度对其他 CVDs 有影响。此外,PM2.5 浓度的升高与甘油三酯(TG)的升高显著相关(OR,1.426;95%CI,1.133-1.795;p=2.469×10),与高密度脂蛋白胆固醇(HDL-C)的降低显著相关(OR,0.779;95%CI,0.615-0.986;p=0.038)。PM10 浓度的升高也与 HDL-C 的降低密切相关(OR,0.563;95%CI,0.366-0.865;p=8.756×10)。我们没有观察到 PM 对其他心血管生物标志物的因果影响。

结论

在遗传水平上,我们的研究表明 PM2.5 与 MI、TG 和 HDL-C 之间存在因果关系,并揭示了 PM10 与 HF、IS 和 HDL-C 之间的因果关系。我们的研究结果表明,需要继续改善空气污染控制,以预防 CVDs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d6/10507646/0f2617790068/fpubh-11-1201479-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验