Dewey Marley J, Chang Raul Sun Han, Nosatov Andrey V, Janssen Katherine, Crotts Sarah J, Hollister Scott J, Harley Brendan A C
bioRxiv. 2023 Sep 7:2023.09.05.556448. doi: 10.1101/2023.09.05.556448.
Regenerative biomaterials for musculoskeletal defects must address multi-scale mechanical challenges. We are developing biomaterials for craniomaxillofacial bone defects that are often large and irregularly shaped. These require close conformal contact between implant and defect margins to aid healing. While we have identified a mineralized collagen scaffold that promotes mesenchymal stem cell osteogenic differentiation and bone formation its mechanical performance is insufficient for surgical translation. We report a generative design approach to create scaffold-mesh composites by embedding a macro-scale polymeric Voronoi mesh into the mineralized collagen scaffold. The mechanics of architected foam reinforced composites are defined by a rigorous predictive moduli equation. We show biphasic composites localize strain during loading. Further, planar and 3D mesh-scaffold composites can be rapidly shaped to aid conformal fitting. Voronoi-based composites overcome traditional porosity-mechanics relationship limits while enabling rapid shaping of regenerative implants to conformally fit complex defects unique for individual patients.
用于肌肉骨骼缺损的再生生物材料必须应对多尺度的力学挑战。我们正在研发用于颅颌面骨缺损的生物材料,这类缺损通常面积大且形状不规则。这就要求植入物与缺损边缘紧密贴合以促进愈合。虽然我们已经确定了一种能促进间充质干细胞成骨分化和骨形成的矿化胶原支架,但其力学性能不足以用于临床转化。我们报告了一种生成式设计方法,通过将宏观尺度的聚合物沃罗诺伊网格嵌入矿化胶原支架中来创建支架-网格复合材料。结构化泡沫增强复合材料的力学性能由一个严格的预测模量方程定义。我们展示了双相复合材料在加载过程中能够使应变局部化。此外,平面和三维网格-支架复合材料能够快速成型以实现贴合。基于沃罗诺伊的复合材料克服了传统的孔隙率-力学关系限制,同时能够快速成型再生植入物,以贴合个体患者特有的复杂缺损。