Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA.
Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA.
Acta Biomater. 2023 Dec;172:249-259. doi: 10.1016/j.actbio.2023.10.005. Epub 2023 Oct 6.
Regenerative biomaterials for musculoskeletal defects must address multi-scale mechanical challenges. Repairing craniomaxillofacial bone defects, which are often large and irregularly shaped, requires close conformal contact between implant and defect margins to aid healing. While mineralized collagen scaffolds can promote mesenchymal stem cell osteogenic differentiation in vitro and bone formation in vivo, their mechanical performance is insufficient for surgical translation. We report a generative design approach to create scaffold-mesh composites by embedding a macro-scale polymeric Voronoi mesh into the mineralized collagen scaffold. The mechanics of architected foam reinforced composites are defined by a rigorous predictive moduli equation. We show biphasic composites localize strain during loading. Further, planar and 3D mesh-scaffold composites can be rapidly shaped to aid conformal fitting. Voronoi-based composites overcome traditional porosity-mechanics relationship limits while enabling rapid shaping of regenerative implants to conformally fit complex defects unique for individual patients. STATEMENT OF SIGNIFICANCE: Biomaterial strategies for (craniomaxillofacial) bone regeneration are often limited by the size and complex geometry of the defects. Voronoi structures are open-cell foams with tunable mechanical properties which have primarily been used computationally. We describe generative design strategies to create Voronoi foams via 3D-printing then embed them into an osteogenic mineralized collagen scaffold to form a multi-scale composite biomaterial. Voronoi structures have predictable and tailorable moduli, permit stain localization to defined regions of the composite, and permit conformal fitting to effect margins to aid surgical practicality and improve host-biomaterial interactions. Multi-scale composites based on Voronoi foams represent an adaptable design approach to address significant challenges to large-scale bone repair.
用于肌肉骨骼缺损的再生生物材料必须解决多尺度力学挑战。修复颅颌面骨缺损,通常是大的和不规则形状的,需要植入物和缺损边缘之间的紧密共形接触,以帮助愈合。虽然矿化胶原支架可以促进间充质干细胞的成骨分化和体内的骨形成,但它们的机械性能不足以进行手术转化。我们报告了一种生成设计方法,通过将宏观聚合物 Voronoi 网格嵌入矿化胶原支架中,来创建支架网格复合材料。结构泡沫增强复合材料的力学性能由严格的预测模量方程定义。我们展示了双相复合材料在加载过程中会使应变局部化。此外,平面和 3D 网格-支架复合材料可以快速成型以帮助共形贴合。基于 Voronoi 的复合材料克服了传统的孔隙率-力学关系限制,同时能够快速成型再生植入物以共形贴合每个患者特有的复杂缺损。
(颅颌面)骨再生的生物材料策略通常受到缺陷的大小和复杂几何形状的限制。Voronoi 结构是具有可调节机械性能的开孔泡沫,主要是通过计算来使用。我们描述了通过 3D 打印生成 Voronoi 泡沫的生成设计策略,然后将其嵌入成骨矿化胶原支架中,形成多尺度复合生物材料。Voronoi 结构具有可预测和可定制的模量,允许应变局限于复合材料的特定区域,并允许共形贴合以适应边缘,从而提高手术的实用性并改善宿主-生物材料相互作用。基于 Voronoi 泡沫的多尺度复合材料代表了一种适应性设计方法,可以解决大规模骨修复的重大挑战。