Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
Small. 2024 Jan;20(4):e2304578. doi: 10.1002/smll.202304578. Epub 2023 Sep 21.
Artificial reconstruction of naturally evolved principles, such as compartmentalization and cascading of multienzyme complexes, offers enormous potential for the development of biocatalytic materials and processes. Due to their unique addressability at the nanoscale, DNA origami nanostructures (DON) have proven to be an exceptionally powerful tool for studying the fundamental processes in biocatalytic cascades. To systematically investigate the diffusion-reaction network of (co)substrate transfer in enzyme cascades, a model system of stereoselective ketoreductase (KRED) with cofactor regenerating enzyme is assembled in different spatial arrangements on DNA nanostructures and is located in the sphere of microbeads (MB) as a spatially confining nano- and microenvironment, respectively. The results, obtained through the use of highly sensitive analytical methods, Western blot-based quantification of the enzymes, and mass spectrometric (MS) product detection, along with theoretical modeling, provide strong evidence for the presence of two interacting compartments, the diffusion layers around the microbead and the DNA scaffold, which influence the catalytic efficiency of the cascade. It is shown that the microscale compartment exerts a strong influence on the productivity of the cascade, whereas the nanoscale arrangement of enzymes has no influence but can be modulated by the insertion of a diffusion barrier.
人工重建自然进化原则,如多酶复合物的分隔和级联,为生物催化材料和过程的发展提供了巨大的潜力。由于 DNA 折纸纳米结构 (DON) 在纳米尺度上具有独特的可寻址性,因此已被证明是研究生物催化级联中基本过程的极其强大的工具。为了系统地研究酶级联中 (共)底物转移的扩散-反应网络,在 DNA 纳米结构上以不同的空间排列组装具有辅因子再生酶的立体选择性酮还原酶 (KRED) 的模型系统,并位于微珠 (MB) 的球体中,分别作为空间限制的纳米和微环境。通过使用高灵敏度的分析方法、基于 Western blot 的酶定量、质谱 (MS) 产物检测以及理论建模获得的结果,为存在两个相互作用的隔室提供了有力证据,即微珠周围的扩散层和 DNA 支架,这两个隔室影响级联的催化效率。结果表明,微尺度隔室对级联的生产力有很强的影响,而酶的纳米级排列没有影响,但可以通过插入扩散屏障来调节。