Suppr超能文献

印度结核病主动病例发现质量:国家层面的二次数据分析。

Quality of active case-finding for tuberculosis in India: a national level secondary data analysis.

机构信息

Division of Health Systems Research, ICMR-National Institute of Epidemiology (ICMR-NIE), Chennai, India.

Division of Epidemiology and Biostatistics, ICMR-National Institute of Epidemiology (ICMR-NIE), Chennai, India.

出版信息

Glob Health Action. 2023 Dec 31;16(1):2256129. doi: 10.1080/16549716.2023.2256129. Epub 2023 Sep 21.

Abstract

BACKGROUND

India has been implementing active case-finding (ACF) for TB among marginalised and vulnerable (high-risk) populations since 2017. The effectiveness of ACF cycle(s) is dependent on the use of appropriate screening and diagnostic tools and meeting quality indicators.

OBJECTIVES

To determine the number of ACF cycles implemented in 2021 at national, state ( = 36) and district ( = 768) level and quality indicators for the first ACF cycle.

METHODS

In this descriptive study, aggregate TB program data for each ACF activity that was extracted was further aggregated against each ACF cycle at the district level in 2021. One ACF cycle was the period identified to cover all the high-risk populations in the district. Three TB ACF quality indicators were calculated: percentage population screened (≥10%), percentage tested among screened (≥4.8%) and percentage diagnosed among tested (≥5%). We also calculated the number needed to screen (NNS) for diagnosing one person with TB (≤1538).

RESULTS

Of 768 TB districts, ACF data for 111 were not available. Of the remaining 657 districts, 642 (98%) implemented one, and 15 implemented two to three ACF cycles. None of the districts or states met all three TB ACF quality indicators' cut-offs. At the national level, for the first ACF cycle, 9.3% of the population were screened, 1% of the screened were tested and 3.7% of the tested were diagnosed. The NNS was 2824: acceptable (≤1538) in institutional facilities and poor for population-based groups. Data were not consistently available to calculate the percentage of i) high-risk population covered, ii) presumptive TB among screened and iii) tested among presumptive.

CONCLUSION

In 2021, India implemented one ACF cycle with sub-optimal ACF quality indicators. Reducing the losses between screening and testing, improving data quality and sensitising stakeholders regarding the importance of meeting all ACF quality indicators are recommended.

摘要

背景

印度自 2017 年以来一直在边缘化和弱势(高风险)人群中开展结核病主动病例发现(ACF)。ACF 周期的有效性取决于使用适当的筛查和诊断工具以及达到质量指标。

目的

确定 2021 年在国家、邦(=36)和区(=768)层面实施的 ACF 周期数量,以及第一个 ACF 周期的质量指标。

方法

在这项描述性研究中,提取的每个 ACF 活动的聚合 TB 项目数据进一步在 2021 年按区层面的每个 ACF 周期进行汇总。一个 ACF 周期是指确定的覆盖区内所有高风险人群的时间段。计算了三个结核病 ACF 质量指标:筛查的人口比例(≥10%)、筛查中检测的比例(≥4.8%)和检测中诊断的比例(≥5%)。我们还计算了诊断一个结核病患者所需的筛查人数(NNS)(≤1538)。

结果

在 768 个结核病区中,有 111 个区的 ACF 数据不可用。在其余的 657 个区中,有 642 个(98%)实施了一个周期,有 15 个区实施了两个至三个周期。没有一个区或邦达到所有三个结核病 ACF 质量指标的截止值。在国家层面,在第一个 ACF 周期中,9.3%的人口接受了筛查,1%的筛查者接受了检测,3.7%的检测者被诊断为结核病。NNS 为 2824:在机构设施中可接受(≤1538),但在基于人群的群体中较差。没有一致的数据来计算 i)高风险人群的覆盖比例,ii)筛查中疑似结核病的比例和 iii)疑似病例中的检测比例。

结论

2021 年,印度实施了一个 ACF 周期,其 ACF 质量指标不理想。建议减少筛查和检测之间的损失,提高数据质量,并使利益相关者认识到达到所有 ACF 质量指标的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/10515680/0bbdac059b9c/ZGHA_A_2256129_F0001_OC.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验