Suppr超能文献

通过主动发现病例与被动发现病例相比,印度新痰涂片阳性结核患者的患者特征、寻医就诊和延迟情况。

Patient characteristics, health seeking and delays among new sputum smear positive TB patients identified through active case finding when compared to passive case finding in India.

机构信息

International Union Against Tuberculosis and Lung Disease (The Union), South-East Asia Office, New Delhi, India.

International Union Against Tuberculosis and Lung Disease (The Union), Paris, France.

出版信息

PLoS One. 2019 Mar 13;14(3):e0213345. doi: 10.1371/journal.pone.0213345. eCollection 2019.

Abstract

BACKGROUND

Axshya SAMVAD is an active tuberculosis (TB) case finding (ACF) strategy under project Axshya (Axshya meaning 'free of TB' and SAMVAD meaning 'conversation') among marginalized and vulnerable populations in 285 districts of India.

OBJECTIVES

To compare patient characteristics, health seeking, delays in diagnosis and treatment initiation among new sputum smear positive TB patients detected through ACF and passive case finding (PCF) under the national TB programme in marginalized and vulnerable populations between March 2016 and February 2017.

METHODS

This observational analytic study was conducted in 18 randomly sampled Axshya districts. We enrolled all TB patients detected through ACF and an equal number of randomly selected patients detected through PCF in the same settings. Data on patient characteristics, health seeking and delays were collected through record review and patient interviews (at their residence). Delays included patient level delay (from eligibility for sputum examination to first contact with any health care provider (HCP)), health system level diagnosis delay (from contact with first HCP to TB diagnosis) and treatment initiation delays (from diagnosis to treatment initiation). Total delay was the sum of patient level, health system level diagnosis delay and treatment initiation delays.

RESULTS

We included 234 ACF-diagnosed and 231 PCF-diagnosed patients. When compared to PCF, ACF patients were relatively older (≥65 years, 14% versus 8%, p = 0.041), had no formal education (57% versus 36%, p<0.001), had lower monthly income per capita (median 13.1 versus 15.7 USD, p = 0.014), were more likely from rural areas (92% versus 81%, p<0.002) and residing far away from the sputum microscopy centres (more than 15 km, 24% versus 18%, p = 0.126). Fewer patients had history of significant loss of weight (68% versus 78%, p = 0.011) and sputum grade of 3+ (15% versus 21%, p = 0.060). Compared to PCF, HCP visits among ACF patients was significantly lower (median one versus two HCPs, p<0.001). ACF patients had significantly lower health system level diagnosis delay (median five versus 19 days, p = 0.008) and the association remained significant after adjusting for potential confounders. Patient level and total delays were not significantly different.

CONCLUSION

Axshya SAMVAD linked the most impoverished communities to TB care and resulted in reduction of health system level diagnosis delay.

摘要

背景

Axshya SAMVAD 是印度 285 个地区针对边缘化和弱势群体开展的一项活动性肺结核(TB)病例发现(ACF)策略,项目名称 Axshya 意为“无结核病”,SAMVAD 意为“对话”。

目的

比较 2016 年 3 月至 2017 年 2 月期间,通过 ACF 和国家结核病规划下的被动病例发现(PCF)在边缘化和弱势群体中发现的新痰涂片阳性肺结核患者的患者特征、就医情况、诊断和治疗开始延迟。

方法

本观察性分析研究在 18 个随机抽样的 Axshya 地区进行。我们纳入了所有通过 ACF 发现的结核病患者,以及在同一环境中通过 PCF 随机选择的相同数量的患者。通过病历回顾和患者访谈(在其住所)收集患者特征、就医情况和延迟数据。延迟包括患者层面的延迟(从有资格进行痰检到首次接触任何医疗保健提供者(HCP))、卫生系统层面的诊断延迟(从接触第一 HCP 到结核病诊断)和治疗开始延迟(从诊断到治疗开始)。总延迟是患者层面、卫生系统层面诊断延迟和治疗开始延迟的总和。

结果

我们纳入了 234 例 ACF 诊断和 231 例 PCF 诊断的患者。与 PCF 相比,ACF 患者年龄较大(≥65 岁,14%比 8%,p=0.041)、无正规教育(57%比 36%,p<0.001)、人均月收入较低(中位数 13.1 美元比 15.7 美元,p=0.014)、更可能来自农村地区(92%比 81%,p<0.002)和居住在离痰显微镜中心较远的地方(超过 15 公里,24%比 18%,p=0.126)。较少的患者有明显体重减轻史(68%比 78%,p=0.011)和痰分级为 3+(15%比 21%,p=0.060)。与 PCF 相比,ACF 患者的 HCP 就诊次数明显较少(中位数一次比两次 HCP,p<0.001)。ACF 患者的卫生系统层面诊断延迟明显较低(中位数 5 天比 19 天,p=0.008),调整潜在混杂因素后仍具有显著相关性。患者层面和总延迟没有显著差异。

结论

Axshya SAMVAD 将最贫困的社区与结核病护理联系起来,减少了卫生系统层面的诊断延迟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e49/6415860/9c46ca48598d/pone.0213345.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验