Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Acc Chem Res. 2023 Oct 3;56(19):2726-2739. doi: 10.1021/acs.accounts.3c00450. Epub 2023 Sep 21.
The function of cellular RNA is modulated by a host of post-transcriptional chemical modifications installed by dedicated RNA-modifying enzymes. RNA modifications are widespread in biology, occurring in all kingdoms of life and in all classes of RNA molecules. They regulate RNA structure, folding, and protein-RNA interactions, and have important roles in fundamental gene expression processes involving mRNA, tRNA, rRNA, and other types of RNA species. Our understanding of RNA modifications has advanced considerably; however, there are still many outstanding questions regarding the distribution of modifications across all RNA transcripts and their biological function. One of the major challenges in the study of RNA modifications is the lack of sequencing methods for the transcriptome-wide mapping of different RNA-modification structures. Furthermore, we lack general strategies to characterize RNA-modifying enzymes and RNA-modification reader proteins. Therefore, there is a need for new approaches to enable integrated studies of RNA-modification chemistry and biology.In this Account, we describe our development and application of chemoproteomic strategies for the study of RNA-modification-associated proteins. We present two orthogonal methods based on nucleoside and oligonucleotide chemical probes: 1) RNA-mediated activity-based protein profiling (RNABPP), a metabolic labeling strategy based on reactive modified nucleoside probes to profile RNA-modifying enzymes in cells and 2) photo-cross-linkable diazirine-containing synthetic oligonucleotide probes for identifying RNA-modification reader proteins.We use RNABPP with C5-modified cytidine and uridine nucleosides to capture diverse RNA-pyrimidine-modifying enzymes including methyltransferases, dihydrouridine synthases, and RNA dioxygenase enzymes. Metabolic labeling facilitates the mechanism-based cross-linking of RNA-modifying enzymes with their native RNA substrates in cells. Covalent RNA-protein complexes are then isolated by denaturing oligo(dT) pulldown, and cross-linked proteins are identified by quantitative proteomics. Once suitable modified nucleosides have been identified as mechanism-based proteomic probes, they can be further deployed in transcriptome-wide sequencing experiments to profile the substrates of RNA-modifying enzymes at nucleotide resolution. Using 5-fluorouridine-mediated RNA-protein cross-linking and sequencing, we analyzed the substrates of human dihydrouridine synthase DUS3L. 5-Ethynylcytidine-mediated cross-linking enabled the investigation of ALKBH1 substrates. We also characterized the functions of these RNA-modifying enzymes in human cells by using genetic knockouts and protein translation reporters.We profiled RNA readers for -methyladenosine (mA) and -methyladenosine (mA) using a comparative proteomic workflow based on diazirine-containing modified oligonucleotide probes. Our approach enables quantitative proteome-wide analysis of the preference of RNA-binding proteins for modified nucleotides across a range of affinities. Interestingly, we found that YTH-domain proteins YTHDF1/2 can bind to both mA and mA to mediate transcript destabilization. Furthermore, mA also inhibits stress granule proteins from binding to RNA.Taken together, we demonstrate the application of chemical probing strategies, together with proteomic and transcriptomic workflows, to reveal new insights into the biological roles of RNA modifications and their associated proteins.
细胞 RNA 的功能受到一系列专门的 RNA 修饰酶所进行的转录后化学修饰的调节。RNA 修饰在生物学中广泛存在,发生在所有生命领域和所有 RNA 分子类型中。它们调节 RNA 的结构、折叠和蛋白质-RNA 相互作用,并在涉及 mRNA、tRNA、rRNA 和其他类型 RNA 物种的基本基因表达过程中发挥重要作用。我们对 RNA 修饰的理解已经有了很大的进展;然而,关于修饰在所有 RNA 转录本中的分布及其生物学功能,仍有许多悬而未决的问题。RNA 修饰研究中的一个主要挑战是缺乏用于不同 RNA 修饰结构的转录组范围映射的测序方法。此外,我们缺乏表征 RNA 修饰酶和 RNA 修饰读取器蛋白的通用策略。因此,需要新的方法来实现 RNA 修饰化学和生物学的综合研究。
在本报告中,我们描述了我们开发和应用化学生物组学策略来研究 RNA 修饰相关蛋白的情况。我们提出了两种基于核苷和寡核苷酸化学探针的正交方法:1)基于反应性修饰核苷探针的 RNA 介导的活性蛋白质谱分析(RNABPP),这是一种代谢标记策略,用于在细胞中对 RNA 修饰酶进行分析;2)用于鉴定 RNA 修饰读取器蛋白的光交联含叠氮化物的合成寡核苷酸探针。
我们使用 C5 修饰的胞嘧啶和尿嘧啶核苷进行 RNABPP,以捕获包括甲基转移酶、二氢尿嘧啶合酶和 RNA 双氧酶在内的各种 RNA 嘧啶修饰酶。代谢标记促进了 RNA 修饰酶与其天然 RNA 底物在细胞中的基于机制的交联。然后通过变性 oligo(dT) 下拉分离共价 RNA-蛋白质复合物,并通过定量蛋白质组学鉴定交联蛋白。一旦合适的修饰核苷被鉴定为基于机制的蛋白质组学探针,它们就可以进一步用于全转录组测序实验,以核苷酸分辨率对 RNA 修饰酶的底物进行分析。我们使用 5-氟尿嘧啶介导的 RNA-蛋白质交联和测序,分析了人二氢尿嘧啶合酶 DUS3L 的底物。5-乙炔胞嘧啶介导的交联使 ALKBH1 底物的研究成为可能。我们还通过使用基因敲除和蛋白质翻译报告,研究了这些 RNA 修饰酶在人细胞中的功能。
我们使用基于含叠氮化物修饰寡核苷酸探针的比较蛋白质组学工作流程,对 mA 和 mA 的 RNA 读取器进行了分析。我们的方法能够对 RNA 结合蛋白对修饰核苷酸的亲和力范围内的偏好进行定量全蛋白质组分析。有趣的是,我们发现 YTH 结构域蛋白 YTHDF1/2 可以结合 mA 和 mA 来介导转录物的不稳定。此外,mA 还抑制应激颗粒蛋白与 RNA 的结合。
综上所述,我们展示了化学探测策略与蛋白质组学和转录组学工作流程的应用,揭示了 RNA 修饰及其相关蛋白的生物学作用的新见解。