Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-114, Iran.
Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-114, Iran.
Med Biol Eng Comput. 2024 Jan;62(1):121-133. doi: 10.1007/s11517-023-02936-6. Epub 2023 Sep 21.
The liver is one of the most important organs, with a complex physiology. Current in-vitro approaches are not accurate for disease modeling and drug toxicity research. One of those features is liver zonation, where cells display different physiological states due to different levels of oxygen and nutrient supplements. Organ-on-a-chip technology employs microfluidic platforms that enable a controlled environment for in-vitro cell culture. In this study, we propose a microfluidic design embedding a gas channel (of ambient air), creating an oxygen gradient. We numerically simulate different flow rates and cell densities with the COMSOL Multiphysics package considering cell-specific consumption rates of oxygen and glucose. We establish the cell density and flow rate for optimum oxygen and glucose distribution in the cell culture chamber. Furthermore, we show that a physiologically relevant concentration of oxygen and glucose in the chip is reached after 24 h and 30 min, respectively. The proposed microfluidic design and optimal parameters we identify in this paper provide a tool for in-vitro liver zonation studies. However, the microfluidic design is not exclusively for liver cell experiments but is foreseen to be applicable in cell studies where different gas concentration gradients are critical, e.g., studying hypoxia or toxic gas impact.
肝脏是最重要的器官之一,具有复杂的生理学特性。目前的体外方法对于疾病建模和药物毒性研究不够准确。其中一个特征是肝脏分区,即由于氧气和营养补充水平的不同,细胞呈现出不同的生理状态。器官芯片技术采用微流控平台,为体外细胞培养创造了可控的环境。在本研究中,我们提出了一种嵌入气体通道(环境空气)的微流设计,从而产生氧气梯度。我们使用 COMSOL Multiphysics 软件包对不同流速和细胞密度进行数值模拟,同时考虑了氧气和葡萄糖的细胞特异性消耗率。我们确定了细胞培养室内最佳的氧气和葡萄糖分布所需的细胞密度和流速。此外,我们表明芯片中的氧气和葡萄糖浓度在 24 小时和 30 分钟后分别达到了生理相关的浓度。本文提出的微流设计和确定的最佳参数为体外肝脏分区研究提供了工具。然而,这种微流设计不仅限于肝细胞实验,还可预见地适用于需要不同气体浓度梯度的细胞研究,例如研究缺氧或有毒气体的影响。