Suppr超能文献

基于计算流体力学和细胞培养的聚合物微流控器件的设计、模拟与评估。

Design, Simulation, and Evaluation of Polymer-Based Microfluidic Devices via Computational Fluid Dynamics and Cell Culture "On-Chip".

机构信息

Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan.

Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan.

出版信息

Biosensors (Basel). 2023 Jul 22;13(7):754. doi: 10.3390/bios13070754.

Abstract

Organ-on-a-chip (OoC) technology has experienced exponential growth driven by the need for a better understanding of in-organ processes and the development of novel approaches. This paper investigates and compares the flow behavior and filling characteristics of two microfluidic liver-on-a-chip devices using Computational Fluid Dynamics (CFD) analysis and experimental cell culture growth based on the Huh7 cell line. The conducted computational analyses for the two chips showed that the elliptical chamber chip proposed herein offers improved flow and filling characteristics in comparison with the previously presented circular chamber chip. Huh7 hepatoma cells were cultured in the microfluidic devices for 24 h under static fluidic conditions and for 24 h with a flow rate of 3 μL·min. Biocompatibility, continuous flow, and biomarker studies showed cell attachment in the chips, confirming the cell viability and their consistent cell growth. The study successfully analyzed the fluid flow behavior, filling characteristics, and biocompatibility of liver-on-a-chip prototype devices, providing valuable insights to improve design and performance and advance alternative methods of in vitro testing.

摘要

器官芯片(OoC)技术在更好地理解器官内过程和开发新方法的需求的推动下经历了指数级增长。本文使用计算流体动力学(CFD)分析和基于 Huh7 细胞系的实验细胞培养生长,研究和比较了两种微流控肝芯片设备的流动行为和填充特性。对这两种芯片进行的计算分析表明,与之前提出的圆形腔芯片相比,本文提出的椭圆形腔芯片具有更好的流动和填充特性。 Huh7 肝癌细胞在微流控装置中进行了 24 小时的静态流体条件培养和 24 小时的 3 μL·min 的流速培养。生物相容性、连续流动和生物标志物研究表明细胞在芯片中附着,证实了细胞活力及其一致的细胞生长。该研究成功分析了肝芯片原型设备的流体流动行为、填充特性和生物相容性,为改进设计和性能以及推进体外测试替代方法提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f693/10377015/64df36332e19/biosensors-13-00754-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验