Department of Electronics, Cuban Center for Neuroscience, Havana, Cuba.
Department of Neuroinformatics, Cuban Center for Neuroscience, Havana, Cuba.
PLoS One. 2023 Sep 21;18(9):e0291963. doi: 10.1371/journal.pone.0291963. eCollection 2023.
This study aimed to identify the most effective summary cognitive index predicted from spatio-temporal gait features (STGF) extracted from gait patterns.
The study involved 125 participants, including 40 young (mean age: 27.65 years, 50% women), and 85 older adults (mean age: 73.25 years, 62.35% women). The group of older adults included both healthy adults and those with Mild Cognitive Impairment (MCI). Participant´s performance in various cognitive domains was evaluated using 12 cognitive measures from five neuropsychological tests. Four summary cognitive indexes were calculated for each case: 1) the z-score of Mini-Mental State Examination (MMSE) from a population norm (MMSE z-score); 2) the sum of the absolute z-scores of the patients' neuropsychological measures from a population norm (ZSum); 3) the first principal component scores obtained from the individual cognitive variables z-scores (PCCog); and 4) the Mahalanobis distance between the vector that represents the subject's cognitive state (defined by the 12 cognitive variables) and the vector corresponding to a population norm (MDCog). The gait patterns were recorded using a body-fixed Inertial Measurement Unit while participants executed four walking tasks (normal, fast, easy- and hard-dual tasks). Sixteen STGF for each walking task, and the dual-task costs for the dual tasks (when a subject performs an attention-demanding task and walks at the same time) were computed. After applied Principal Component Analysis to gait measures (96 features), a robust regression was used to predict each cognitive index and individual cognitive variable. The adjusted proportion of variance (adjusted-R2) coefficients were reported, and confidence intervals were estimated using the bootstrap procedure.
The mean values of adjusted-R2 for the summary cognitive indexes were as follows: 0.0248 for MMSE z-score, 0.0080 for ZSum, 0.0033 for PCCog, and 0.4445 for MDCog. The mean adjusted-R2 values for the z-scores of individual cognitive variables ranged between 0.0009 and 0.0693. Multiple linear regression was only statistically significant for MDCog, with the highest estimated adjusted-R2 value.
The association between individual cognitive variables and most of the summary cognitive indexes with gait parameters was weak. However, the MDCog index showed a stronger and significant association with the STGF, exhibiting the highest value of the proportion of the variance that can be explained by the predictor variables. These findings suggest that the MDCog index may be a useful tool in studying the relationship between gait patterns and cognition.
本研究旨在从步态模式中提取的时空步态特征(STGF)中确定预测效果最佳的综合认知指标。
本研究共纳入 125 名参与者,其中 40 名年轻参与者(平均年龄:27.65 岁,女性占 50%),85 名老年参与者(平均年龄:73.25 岁,女性占 62.35%)。老年组参与者包括健康成年人和轻度认知障碍(MCI)患者。使用来自五项神经心理学测试的 12 项认知测试评估每位参与者在各个认知领域的表现。为每个病例计算了 4 个综合认知指标:1)基于人群正常值的 Mini-Mental State Examination(MMSE)的 z 分数(MMSE z 分数);2)基于人群正常值的患者神经心理学测试的绝对 z 分数之和(ZSum);3)从个体认知变量 z 分数获得的第一主成分得分(PCCog);4)代表主体认知状态的向量(由 12 项认知变量定义)与代表人群正常值的向量之间的马氏距离(MDCog)。当参与者执行四项步行任务(正常、快速、简单双任务和困难双任务)时,使用身体固定惯性测量单元记录步态模式。为每个步行任务计算了 16 个 STGF 和双任务的双重任务成本(当一个人执行一项需要注意力的任务并同时行走时)。在对步态测量值(96 个特征)进行主成分分析后,使用稳健回归预测每个认知指标和个体认知变量。报告了调整后的方差比例(调整后的 R2)系数,并使用自举程序估计置信区间。
综合认知指标的平均调整后 R2 值如下:MMSE z 分数为 0.0248,ZSum 为 0.0080,PCCog 为 0.0033,MDCog 为 0.4445。个体认知变量的平均调整后 R2 值范围在 0.0009 到 0.0693 之间。多元线性回归仅在 MDCog 上具有统计学意义,其估计的调整后 R2 值最高。
个体认知变量与大多数综合认知指标与步态参数之间的关联较弱。然而,MDCog 指数与 STGF 的关联更强且具有统计学意义,表现出可由预测变量解释的方差比例的最高值。这些发现表明,MDCog 指数可能是研究步态模式与认知之间关系的有用工具。