Suppr超能文献

运动回路的抑制性反馈调控秀丽隐杆线虫的机械感觉处理。

Inhibitory feedback from the motor circuit gates mechanosensory processing in Caenorhabditis elegans.

机构信息

Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America.

Department of Physics, Princeton University, Princeton, New Jersey, United States of America.

出版信息

PLoS Biol. 2023 Sep 21;21(9):e3002280. doi: 10.1371/journal.pbio.3002280. eCollection 2023 Sep.

Abstract

Animals must integrate sensory cues with their current behavioral context to generate a suitable response. How this integration occurs is poorly understood. Previously, we developed high-throughput methods to probe neural activity in populations of Caenorhabditis elegans and discovered that the animal's mechanosensory processing is rapidly modulated by the animal's locomotion. Specifically, we found that when the worm turns it suppresses its mechanosensory-evoked reversal response. Here, we report that C. elegans use inhibitory feedback from turning-associated neurons to provide this rapid modulation of mechanosensory processing. By performing high-throughput optogenetic perturbations triggered on behavior, we show that turning-associated neurons SAA, RIV, and/or SMB suppress mechanosensory-evoked reversals during turns. We find that activation of the gentle-touch mechanosensory neurons or of any of the interneurons AIZ, RIM, AIB, and AVE during a turn is less likely to evoke a reversal than activation during forward movement. Inhibiting neurons SAA, RIV, and SMB during a turn restores the likelihood with which mechanosensory activation evokes reversals. Separately, activation of premotor interneuron AVA evokes reversals regardless of whether the animal is turning or moving forward. We therefore propose that inhibitory signals from SAA, RIV, and/or SMB gate mechanosensory signals upstream of neuron AVA. We conclude that C. elegans rely on inhibitory feedback from the motor circuit to modulate its response to sensory stimuli on fast timescales. This need for motor signals in sensory processing may explain the ubiquity in many organisms of motor-related neural activity patterns seen across the brain, including in sensory processing areas.

摘要

动物必须将感觉线索与其当前的行为背景相结合,以产生合适的反应。这种整合是如何发生的还知之甚少。此前,我们开发了高通量方法来探测秀丽隐杆线虫群体的神经活动,发现动物的机械感觉处理会被其运动迅速调节。具体来说,我们发现当蠕虫转弯时,它会抑制其机械感觉引发的反转反应。在这里,我们报告说,秀丽隐杆线虫利用转弯相关神经元的抑制性反馈来提供这种快速的机械感觉处理调制。通过在行为上执行高通量光遗传学扰动,我们表明转弯相关神经元 SAA、RIV 和/或 SMB 在转弯过程中抑制机械感觉引发的反转。我们发现,在转弯过程中激活轻柔触摸机械感觉神经元或任何中间神经元 AIZ、RIM、AIB 和 AVE 比在前进运动中激活时不太可能引发反转。在转弯过程中抑制神经元 SAA、RIV 和 SMB 会恢复机械感觉激活引发反转的可能性。此外,前运动中间神经元 AVA 的激活无论动物是转弯还是前进都会引发反转。因此,我们提出 SAA、RIV 和/或 SMB 的抑制信号在上游神经元 AVA 处对机械感觉信号进行门控。我们得出的结论是,秀丽隐杆线虫依赖于运动回路的抑制性反馈来快速调节其对感觉刺激的反应。这种在感觉处理中对运动信号的需求可能解释了在许多生物体中普遍存在的与大脑中包括感觉处理区域在内的运动相关神经活动模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7635/10617738/9ac2b270ab23/pbio.3002280.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验