Suppr超能文献

毒蕈碱性关联放电过滤在化学感觉神经元中的再传入知觉。

Tyraminergic corollary discharge filters reafferent perception in a chemosensory neuron.

机构信息

Department of Neuroscience and Developmental Biology, Vienna BioCenter (VBC), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.

Department of Neuroscience and Developmental Biology, Vienna BioCenter (VBC), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.

出版信息

Curr Biol. 2022 Jul 25;32(14):3048-3058.e6. doi: 10.1016/j.cub.2022.05.051. Epub 2022 Jun 10.

Abstract

Interpreting sensory information requires its integration with the current behavior of the animal. However, how motor-related circuits influence sensory information processing is incompletely understood. Here, we report that current locomotor state directly modulates the activity of BAG CO sensory neurons in Caenorhabditis elegans. By recording neuronal activity in animals freely navigating CO landscapes, we found that during reverse crawling states, BAG activity is suppressed by tyraminergic corollary discharge signaling. We provide genetic evidence that tyramine released from the RIM reversal interneurons extrasynaptically activates the inhibitory chloride channel LGC-55 in BAG. Disrupting this pathway genetically leads to excessive behavioral responses to CO stimuli. Moreover, we find that LGC-55 signaling cancels out perception of self-produced CO and O stimuli when animals reverse into their own gas plume in ethologically relevant aqueous environments. Our results show that sensorimotor integration involves corollary discharge signals directly modulating chemosensory neurons.

摘要

解释感官信息需要将其与动物当前的行为相结合。然而,运动相关电路如何影响感官信息处理还不完全清楚。在这里,我们报告说,当前的运动状态直接调节秀丽隐杆线虫 BAG CO 感觉神经元的活动。通过记录在 CO 景观中自由导航的动物的神经元活动,我们发现,在反向爬行状态下,BAG 活性被 tyraminergic 推论放电信号抑制。我们提供遗传证据表明,来自 RIM 反转中间神经元的 tyramine 以突触外的方式激活 BAG 中的抑制性氯离子通道 LGC-55。从遗传学上破坏这条途径会导致对 CO 刺激产生过度的行为反应。此外,我们发现当动物在与行为相关的水环境中反转到自身的气体羽流时,LGC-55 信号会消除对自身产生的 CO 和 O 刺激的感知。我们的研究结果表明,感觉运动整合涉及到副放电信号直接调节化学感觉神经元。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验