Gu Yanwu, Zhuang Wei-Feng, Chai Xudan, Liu Dong E
Beijing Academy of Quantum Information Sciences, Beijing, 100193, China.
State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China.
Nat Commun. 2023 Sep 21;14(1):5880. doi: 10.1038/s41467-023-41598-8.
Noise remains the major obstacle to scalable quantum computation. Quantum benchmarking provides key information on noise properties and is an important step for developing more advanced quantum processors. However, current benchmarking methods are either limited to a specific subset of quantum gates or cannot directly describe the performance of the individual target gate. To overcome these limitations, we propose channel spectrum benchmarking (CSB), a method to infer the noise properties of the target gate, including process fidelity, stochastic fidelity, and some unitary parameters, from the eigenvalues of its noisy channel. Our CSB method is insensitive to state-preparation and measurement errors, and importantly, can benchmark universal gates and is scalable to many-qubit systems. Unlike standard randomized schemes, CSB can provide direct noise information for both target native gates and circuit fragments, allowing benchmarking and calibration of global entangling gates and frequently used modules in quantum algorithms like Trotterized Hamiltonian evolution operator in quantum simulation.
噪声仍然是可扩展量子计算的主要障碍。量子基准测试提供了有关噪声特性的关键信息,是开发更先进量子处理器的重要一步。然而,当前的基准测试方法要么局限于量子门的特定子集,要么无法直接描述单个目标门的性能。为了克服这些限制,我们提出了信道频谱基准测试(CSB),一种从目标门的噪声信道的特征值推断其噪声特性的方法,包括过程保真度、随机保真度和一些酉参数。我们的CSB方法对状态制备和测量误差不敏感,重要的是,可以对通用门进行基准测试,并且可扩展到多量子比特系统。与标准随机方案不同,CSB可以为目标原生门和电路片段提供直接的噪声信息,从而能够对全局纠缠门以及量子算法中常用模块(如量子模拟中的特罗特化哈密顿演化算符)进行基准测试和校准。