Wu Yulin, Bao Wan-Su, Cao Sirui, Chen Fusheng, Chen Ming-Cheng, Chen Xiawei, Chung Tung-Hsun, Deng Hui, Du Yajie, Fan Daojin, Gong Ming, Guo Cheng, Guo Chu, Guo Shaojun, Han Lianchen, Hong Linyin, Huang He-Liang, Huo Yong-Heng, Li Liping, Li Na, Li Shaowei, Li Yuan, Liang Futian, Lin Chun, Lin Jin, Qian Haoran, Qiao Dan, Rong Hao, Su Hong, Sun Lihua, Wang Liangyuan, Wang Shiyu, Wu Dachao, Xu Yu, Yan Kai, Yang Weifeng, Yang Yang, Ye Yangsen, Yin Jianghan, Ying Chong, Yu Jiale, Zha Chen, Zhang Cha, Zhang Haibin, Zhang Kaili, Zhang Yiming, Zhao Han, Zhao Youwei, Zhou Liang, Zhu Qingling, Lu Chao-Yang, Peng Cheng-Zhi, Zhu Xiaobo, Pan Jian-Wei
Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China.
Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.
Phys Rev Lett. 2021 Oct 29;127(18):180501. doi: 10.1103/PhysRevLett.127.180501.
Scaling up to a large number of qubits with high-precision control is essential in the demonstrations of quantum computational advantage to exponentially outpace the classical hardware and algorithmic improvements. Here, we develop a two-dimensional programmable superconducting quantum processor, Zuchongzhi, which is composed of 66 functional qubits in a tunable coupling architecture. To characterize the performance of the whole system, we perform random quantum circuits sampling for benchmarking, up to a system size of 56 qubits and 20 cycles. The computational cost of the classical simulation of this task is estimated to be 2-3 orders of magnitude higher than the previous work on 53-qubit Sycamore processor [Nature 574, 505 (2019)NATUAS0028-083610.1038/s41586-019-1666-5. We estimate that the sampling task finished by Zuchongzhi in about 1.2 h will take the most powerful supercomputer at least 8 yr. Our work establishes an unambiguous quantum computational advantage that is infeasible for classical computation in a reasonable amount of time. The high-precision and programmable quantum computing platform opens a new door to explore novel many-body phenomena and implement complex quantum algorithms.
在量子计算优势的演示中,扩大到大量具有高精度控制的量子比特对于指数级超越经典硬件和算法改进至关重要。在此,我们开发了一种二维可编程超导量子处理器“祖冲之号”,它由66个处于可调耦合架构中的功能量子比特组成。为了表征整个系统的性能,我们进行随机量子电路采样以进行基准测试,系统规模可达56个量子比特和20个周期。这项任务的经典模拟计算成本估计比之前关于53个量子比特的“悬铃木”处理器的工作[《自然》574, 505 (2019)NATUAS0028 - 083610.1038/s41586 - 019 - 1666 - 5]高2 - 3个数量级。我们估计,“祖冲之号”在约1.2小时内完成的采样任务,将使最强大的超级计算机至少需要8年时间。我们的工作确立了明确的量子计算优势,即在合理时间内对于经典计算是不可行的。这个高精度且可编程的量子计算平台为探索新型多体现象和实现复杂量子算法打开了一扇新的大门。