Jaramillo-Hernández Camilo, Oestreicher Víctor, Mizrahi Martín, Abellán Gonzalo
Instituto de Ciencia Molecular (ICMol). Universidad de Valencia, Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, CCT La Plata- CONICET. Diagonal 113 y 64, 1900, La Plata, Argentina.
Beilstein J Nanotechnol. 2023 Sep 11;14:927-938. doi: 10.3762/bjnano.14.76. eCollection 2023.
Research on two-dimensional materials is one of the most relevant fields in materials science. Layered double hydroxides (LDHs), a versatile class of anionic clays, exhibit great potential in photocatalysis, energy storage and conversion, and environmental applications. However, its implementation in real-life devices requires the development of efficient and reproducible large-scale synthesis processes. Unfortunately, reliable methods that allow for the production of large quantities of two-dimensional LDHs with well-defined morphologies and high crystallinity are very scarce. In this work, we carry out a scale-up of the urea-based CoAl-LDH synthesis method. We thoroughly study the effects of the mass scale-up (25-fold: up to 375 mM) and the volumetric scale-up (20-fold: up to 2 L). For this, we use a combination of several structural (XRD, TGA, and N and CO isotherms), microscopic (SEM, TEM, and AFM), magnetic (SQUID), and spectroscopic techniques (ATR-FTIR, UV-vis, XPS, ICP-MS, and XANES-EXAFS). In the case of the volumetric scale-up, a reduction of 45% in the lateral dimensions of the crystals (from 3.7 to 2.0 µm) is observed as the reaction volume increases. This fact is related to modified heating processes affecting the alkalinization rates and, concomitantly, the precipitation, even under recrystallization at high temperatures. In contrast, for the tenfold mass scale-up, similar morphological features were observed and assigned to changes in nucleation and growth. However, at higher concentrations, simonkolleite-like Co-based layered hydroxide impurities are formed, indicating a phase competition during the precipitation related to the thermodynamic stability of the growing phases. Overall, this work demonstrates that it is possible to upscale the synthesis of high-quality hexagonal CoAl-LDH in a reproducible manner. It highlights the most critical synthesis aspects that must be controlled and provides various fingerprints to trace the quality of these materials. These results will contribute to bringing the use of these 2D layered materials closer to reality in different applications of interest.
二维材料研究是材料科学中最具相关性的领域之一。层状双氢氧化物(LDHs)作为一类通用的阴离子粘土,在光催化、能量存储与转换以及环境应用中展现出巨大潜力。然而,要将其应用于实际生活中的器件,需要开发高效且可重复的大规模合成工艺。不幸的是,能够大量生产具有明确形态和高结晶度的二维LDHs的可靠方法非常稀少。在这项工作中,我们对基于尿素的CoAl-LDH合成方法进行了放大研究。我们深入研究了质量放大(25倍:高达375 mM)和体积放大(20倍:高达2 L)的影响。为此,我们结合使用了多种结构分析(XRD、TGA以及N和CO等温线)、微观分析(SEM、TEM和AFM)、磁性分析(SQUID)以及光谱技术(ATR-FTIR、UV-vis、XPS、ICP-MS和XANES-EXAFS)。在体积放大的情况下,随着反应体积增加,观察到晶体横向尺寸减小了45%(从3.7 µm降至2.0 µm)。这一现象与加热过程的改变影响碱化速率有关,进而影响沉淀过程,即使在高温再结晶的情况下也是如此。相比之下,对于质量放大十倍的情况,观察到了类似的形态特征,并归因于成核和生长的变化。然而,在更高浓度下,会形成类水氯铜矿的钴基层状氢氧化物杂质,这表明沉淀过程中存在与生长相热力学稳定性相关的相竞争。总体而言,这项工作表明以可重复的方式放大合成高质量的六方CoAl-LDH是可行的。它突出了必须控制的最关键合成方面,并提供了各种用于追踪这些材料质量的特征。这些结果将有助于使这些二维层状材料在不同感兴趣的应用中更接近实际应用。