Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The People's Republic of China.
Hubei Province Key Laboratory of Molecular Imaging, Wuhan, The People's Republic of China.
Eur Radiol. 2024 Apr;34(4):2716-2726. doi: 10.1007/s00330-023-10241-x. Epub 2023 Sep 22.
To investigate if delta-radiomics features have the potential to predict the major pathological response (MPR) to neoadjuvant chemoimmunotherapy in non-small cell lung cancer (NSCLC) patients.
Two hundred six stage IIA-IIIB NSCLC patients from three institutions (Database1 = 164; Database2 = 21; Database3 = 21) who received neoadjuvant chemoimmunotherapy and surgery were included. Patients in Database1 were randomly assigned to the training dataset and test dataset, with a ratio of 0.7:0.3. Patients in Database2 and Database3 were used as two independent external validation datasets. Contrast-enhanced CT scans were obtained at baseline and before surgery. The delta-radiomics features were defined as the relative net change of radiomics features between baseline and preoperative. The delta-radiomics model and pre-treatment radiomics model were established. The performance of Immune-Related Response Evaluation Criteria in Solid Tumors (iRECIST) for predicting MPR was also evaluated.
Half of the patients (106/206, 51.5%) showed MPR after neoadjuvant chemoimmunotherapy. For predicting MPR, the delta-radiomics model achieved a satisfying area under the curves (AUCs) values of 0.768, 0.732, 0.833, and 0.716 in the training, test, and two external validation databases, respectively, which showed a superior predictive performance than the pre-treatment radiomics model (0.644, 0.616, 0.475, and 0.608). Compared with iRECIST criteria (0.624, 0.572, 0.650, and 0.466), a mixed model that combines delta-radiomics features and iRECIST had higher AUC values for MPR prediction of 0.777, 0.761, 0.850, and 0.670 in four sets.
The delta-radiomics model demonstrated superior diagnostic performance compared to pre-treatment radiomics model and iRECIST criteria in predicting MPR preoperatively in neoadjuvant chemoimmunotherapy for stage II-III NSCLC.
Delta-radiomics features based on the relative net change of radiomics features between baseline and preoperative CT scans serve a vital support tool in accurately identifying responses to neoadjuvant chemoimmunotherapy, which can help physicians make more appropriate treatment decisions.
• The performances of pre-treatment radiomics model and iRECIST model in predicting major pathological response of neoadjuvant chemoimmunotherapy were unsatisfactory. • The delta-radiomics features based on relative net change of radiomics features between baseline and preoperative CT scans may be used as a noninvasive biomarker for predicting major pathological response of neoadjuvant chemoimmunotherapy. • Combining delta-radiomics features and iRECIST can further improve the predictive performance of responses to neoadjuvant chemoimmunotherapy.
探究 delta 放射组学特征是否有可能预测非小细胞肺癌(NSCLC)患者新辅助化疗免疫治疗的主要病理反应(MPR)。
纳入来自三个机构的 206 名接受新辅助化疗免疫治疗和手术的 IIA-IIIB 期 NSCLC 患者(数据库 1=164;数据库 2=21;数据库 3=21)。数据库 1 中的患者被随机分配到训练数据集和测试数据集,比例为 0.7:0.3。数据库 2 和数据库 3 中的患者分别作为两个独立的外部验证数据集。基线和术前采集增强 CT 扫描。将基线和术前之间的放射组学特征的相对净变化定义为 delta 放射组学特征。建立 delta 放射组学模型和预处理放射组学模型。还评估了实体瘤免疫相关反应评估标准(iRECIST)预测 MPR 的性能。
新辅助化疗免疫治疗后,有一半患者(106/206,51.5%)表现出 MPR。对于预测 MPR,delta 放射组学模型在训练、测试和两个外部验证数据库中的 AUC 值分别为 0.768、0.732、0.833 和 0.716,表现出优于预处理放射组学模型(0.644、0.616、0.475 和 0.608)的预测性能。与 iRECIST 标准(0.624、0.572、0.650 和 0.466)相比,结合 delta 放射组学特征和 iRECIST 的混合模型在预测新辅助化疗免疫治疗 II-III 期 NSCLC 的 MPR 方面具有更高的 AUC 值,分别为 0.777、0.761、0.850 和 0.670。
与预处理放射组学模型和 iRECIST 标准相比,Delta 放射组学模型在预测新辅助化疗免疫治疗 II-III 期 NSCLC 的 MPR 方面具有更高的诊断性能。
基于基线和术前 CT 扫描之间放射组学特征的相对净变化的 delta 放射组学特征可作为一种无创生物标志物,用于准确识别新辅助化疗免疫治疗的反应,从而帮助医生做出更合适的治疗决策。
•预处理放射组学模型和 iRECIST 模型在预测新辅助化疗免疫治疗的 MPR 方面表现不佳。•基于基线和术前 CT 扫描之间放射组学特征的相对净变化的 delta 放射组学特征可作为新辅助化疗免疫治疗 MPR 的预测生物标志物。•结合 delta 放射组学特征和 iRECIST 可以进一步提高对新辅助化疗免疫治疗反应的预测性能。