Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
Sci Rep. 2023 Sep 22;13(1):15763. doi: 10.1038/s41598-023-42992-4.
Exploiting synthetic lethality is a promising strategy for developing targeted cancer therapies. However, identifying clinically significant synthetic lethal (SL) interactions among a large number of gene combinations is a challenging computational task. In this study, we developed the SL-scan pipeline based on metabolic network modeling to discover SL interaction. The SL-scan pipeline identifies the association between simulated Flux Balance Analysis knockout scores and mutation data across cancer cell lines and predicts putative SL interactions. We assessed the concordance of the SL pairs predicted by SL-scan with those of obtained from analysis of the CRISPR, shRNA, and PRISM datasets. Our results demonstrate that the SL-scan pipeline outperformed existing SL prediction approaches based on metabolic networks in identifying SL pairs in various cancers. This study emphasizes the importance of integrating multiple data sources, particularly mutation data, when identifying SL pairs for targeted cancer therapies. The findings of this study may lead to the development of novel targeted cancer therapies.
利用合成致死性是开发靶向癌症疗法的一种有前途的策略。然而,在大量基因组合中识别具有临床意义的合成致死(SL)相互作用是一项具有挑战性的计算任务。在这项研究中,我们开发了基于代谢网络建模的 SL-scan 管道来发现 SL 相互作用。SL-scan 管道识别模拟通量平衡分析敲除分数与癌细胞系中突变数据之间的关联,并预测可能的 SL 相互作用。我们评估了 SL-scan 预测的 SL 对与从 CRISPR、shRNA 和 PRISM 数据集分析中获得的 SL 对的一致性。我们的结果表明,在识别各种癌症中的 SL 对时,SL-scan 管道在基于代谢网络的现有 SL 预测方法中表现出色。这项研究强调了在识别靶向癌症疗法的 SL 对时整合多个数据源(特别是突变数据)的重要性。这项研究的结果可能导致新的靶向癌症疗法的发展。