Suppr超能文献

GS深度网络:利用深度神经网络和Grad-Shafranov方程掌握托卡马克等离子体平衡

GS-DeepNet: mastering tokamak plasma equilibria with deep neural networks and the Grad-Shafranov equation.

作者信息

Joung Semin, Ghim Y-C, Kim Jaewook, Kwak Sehyun, Kwon Daeho, Sung C, Kim D, Kim Hyun-Seok, Bak J G, Yoon S W

机构信息

Department of Nuclear and Quantum Engineering, KAIST, Daejeon, 34141, South Korea.

University of Wisconsin-Madison, Madison, WI, 53706, USA.

出版信息

Sci Rep. 2023 Sep 22;13(1):15799. doi: 10.1038/s41598-023-42991-5.

Abstract

The force-balanced state of magnetically confined plasmas heated up to 100 million degrees Celsius must be sustained long enough to achieve a burning-plasma state, such as in the case of ITER, a fusion reactor that promises a net energy gain. This force balance between the Lorentz force and the pressure gradient force, known as a plasma equilibrium, can be theoretically portrayed together with Maxwell's equations as plasmas are collections of charged particles. Nevertheless, identifying the plasma equilibrium in real time is challenging owing to its free-boundary and ill-posed conditions, which conventionally involves iterative numerical approach with a certain degree of subjective human decisions such as including or excluding certain magnetic measurements to achieve numerical convergence on the solution as well as to avoid unphysical solutions. Here, we introduce GS-DeepNet, which learns plasma equilibria through solely unsupervised learning, without using traditional numerical algorithms. GS-DeepNet includes two neural networks and teaches itself. One neural network generates a possible candidate of an equilibrium following Maxwell's equations and is taught by the other network satisfying the force balance under the equilibrium. Measurements constrain both networks. Our GS-DeepNet achieves reliable equilibria with uncertainties in contrast with existing methods, leading to possible better control of fusion-grade plasmas.

摘要

被加热到一亿摄氏度的磁约束等离子体的力平衡状态必须维持足够长的时间,以实现燃烧等离子体状态,例如在ITER(一个有望实现净能量增益的聚变反应堆)的情况下。洛伦兹力和压力梯度力之间的这种力平衡,即所谓的等离子体平衡,理论上可以与麦克斯韦方程组一起描述,因为等离子体是带电粒子的集合。然而,实时识别等离子体平衡具有挑战性,这是由于其自由边界和不适定条件,传统上这涉及到带有一定程度人为主观决策的迭代数值方法,例如包括或排除某些磁测量,以实现解的数值收敛以及避免非物理解。在这里,我们引入了GS-DeepNet,它通过完全无监督学习来学习等离子体平衡,而不使用传统数值算法。GS-DeepNet包括两个神经网络并能自我学习。一个神经网络根据麦克斯韦方程组生成一个可能的平衡候选解,并由另一个满足平衡下力平衡的网络进行训练。测量对两个网络都有约束。与现有方法相比,我们的GS-DeepNet能够获得具有不确定性的可靠平衡,从而有可能更好地控制聚变级等离子体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c3/10516960/ae934860b2de/41598_2023_42991_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验