文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习加速的计算流体力学。

Machine learning-accelerated computational fluid dynamics.

机构信息

Google Research, Mountain View, CA 94043;

Google Research, Mountain View, CA 94043.

出版信息

Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2101784118.


DOI:10.1073/pnas.2101784118
PMID:34006645
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8166023/
Abstract

Numerical simulation of fluids plays an essential role in modeling many physical phenomena, such as weather, climate, aerodynamics, and plasma physics. Fluids are well described by the Navier-Stokes equations, but solving these equations at scale remains daunting, limited by the computational cost of resolving the smallest spatiotemporal features. This leads to unfavorable trade-offs between accuracy and tractability. Here we use end-to-end deep learning to improve approximations inside computational fluid dynamics for modeling two-dimensional turbulent flows. For both direct numerical simulation of turbulence and large-eddy simulation, our results are as accurate as baseline solvers with 8 to 10× finer resolution in each spatial dimension, resulting in 40- to 80-fold computational speedups. Our method remains stable during long simulations and generalizes to forcing functions and Reynolds numbers outside of the flows where it is trained, in contrast to black-box machine-learning approaches. Our approach exemplifies how scientific computing can leverage machine learning and hardware accelerators to improve simulations without sacrificing accuracy or generalization.

摘要

数值模拟在模拟许多物理现象(如天气、气候、空气动力学和等离子体物理)中起着至关重要的作用。纳维-斯托克斯方程可以很好地描述流体,但由于需要解决最小时空特征的计算成本,因此在规模上求解这些方程仍然具有挑战性。这导致准确性和可处理性之间存在不利的权衡。在这里,我们使用端到端深度学习来改进计算流体动力学中的近似值,以模拟二维湍流。对于湍流的直接数值模拟和大涡模拟,我们的结果与基线求解器一样准确,在每个空间维度上的分辨率提高了 8 到 10 倍,从而实现了 40 到 80 倍的计算加速。与黑盒机器学习方法相比,我们的方法在长时间模拟中保持稳定,并可以推广到训练之外的强迫函数和雷诺数。我们的方法示例说明了科学计算如何利用机器学习和硬件加速器来提高模拟精度而不牺牲准确性或泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f5/8166023/be4e481261bf/pnas.2101784118fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f5/8166023/eb25ab755e99/pnas.2101784118fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f5/8166023/b9271d7f6384/pnas.2101784118fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f5/8166023/b4c9879a73a9/pnas.2101784118fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f5/8166023/425a747d77c4/pnas.2101784118fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f5/8166023/4fc1a2656495/pnas.2101784118fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f5/8166023/be4e481261bf/pnas.2101784118fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f5/8166023/eb25ab755e99/pnas.2101784118fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f5/8166023/b9271d7f6384/pnas.2101784118fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f5/8166023/b4c9879a73a9/pnas.2101784118fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f5/8166023/425a747d77c4/pnas.2101784118fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f5/8166023/4fc1a2656495/pnas.2101784118fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f5/8166023/be4e481261bf/pnas.2101784118fig06.jpg

相似文献

[1]
Machine learning-accelerated computational fluid dynamics.

Proc Natl Acad Sci U S A. 2021-5-25

[2]
Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.

Int J Artif Organs. 2018-11

[3]
Lagrangian large eddy simulations via physics-informed machine learning.

Proc Natl Acad Sci U S A. 2023-8-22

[4]
Solving inverse problems in physics by optimizing a discrete loss: Fast and accurate learning without neural networks.

PNAS Nexus. 2024-1-11

[5]
Scientific multi-agent reinforcement learning for wall-models of turbulent flows.

Nat Commun. 2022-3-17

[6]
High-performance computing in computational fluid dynamics: progress and challenges.

Philos Trans A Math Phys Eng Sci. 2002-6-15

[7]
Constrained Reversible System for Navier-Stokes Turbulence.

Phys Rev Lett. 2021-11-5

[8]
Physics-informed machine learning: case studies for weather and climate modelling.

Philos Trans A Math Phys Eng Sci. 2021-4-5

[9]
Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.

Phys Rev E. 2017-12-14

[10]
Learning data-driven discretizations for partial differential equations.

Proc Natl Acad Sci U S A. 2019-7-16

引用本文的文献

[1]
Machine learning enabled multiscale model for nanoparticle margination and physiology based pharmacokinetics.

Comput Chem Eng. 2025-7

[2]
Machine learning applications for thermochemical and kinetic property prediction.

Rev Chem Eng. 2024-11-29

[3]
Stability analysis of chaotic systems in latent spaces.

Nonlinear Dyn. 2025

[4]
Artificial intelligence for modeling and understanding extreme weather and climate events.

Nat Commun. 2025-2-24

[5]
Numerical and machine learning based evaluation of ethylene glycol based hybrid nano-structured (TiO-SWCNTs) fluid flow.

Sci Rep. 2025-2-19

[6]
Control of flow behavior in complex fluids using automatic differentiation.

Proc Natl Acad Sci U S A. 2025-2-25

[7]
Machine Learning in Computational Design and Optimization of Disordered Nanoporous Materials.

Materials (Basel). 2025-1-24

[8]
Accelerating computational fluid dynamics simulation of post-combustion carbon capture modeling with MeshGraphNets.

Front Artif Intell. 2025-1-7

[9]
Uncertainty quantification in coupled wildfire-atmosphere simulations at scale.

PNAS Nexus. 2024-12-10

[10]
Conditional neural field latent diffusion model for generating spatiotemporal turbulence.

Nat Commun. 2024-11-29

本文引用的文献

[1]
Kohn-Sham Equations as Regularizer: Building Prior Knowledge into Machine-Learned Physics.

Phys Rev Lett. 2021-1-22

[2]
Learning data-driven discretizations for partial differential equations.

Proc Natl Acad Sci U S A. 2019-7-16

[3]
Assessing the scales in numerical weather and climate predictions: will exascale be the rescue?

Philos Trans A Math Phys Eng Sci. 2019-4-8

[4]
Deep learning for universal linear embeddings of nonlinear dynamics.

Nat Commun. 2018-11-23

[5]
The quiet revolution of numerical weather prediction.

Nature. 2015-9-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索