Google Research, Mountain View, CA 94043;
Google Research, Mountain View, CA 94043.
Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2101784118.
Numerical simulation of fluids plays an essential role in modeling many physical phenomena, such as weather, climate, aerodynamics, and plasma physics. Fluids are well described by the Navier-Stokes equations, but solving these equations at scale remains daunting, limited by the computational cost of resolving the smallest spatiotemporal features. This leads to unfavorable trade-offs between accuracy and tractability. Here we use end-to-end deep learning to improve approximations inside computational fluid dynamics for modeling two-dimensional turbulent flows. For both direct numerical simulation of turbulence and large-eddy simulation, our results are as accurate as baseline solvers with 8 to 10× finer resolution in each spatial dimension, resulting in 40- to 80-fold computational speedups. Our method remains stable during long simulations and generalizes to forcing functions and Reynolds numbers outside of the flows where it is trained, in contrast to black-box machine-learning approaches. Our approach exemplifies how scientific computing can leverage machine learning and hardware accelerators to improve simulations without sacrificing accuracy or generalization.
数值模拟在模拟许多物理现象(如天气、气候、空气动力学和等离子体物理)中起着至关重要的作用。纳维-斯托克斯方程可以很好地描述流体,但由于需要解决最小时空特征的计算成本,因此在规模上求解这些方程仍然具有挑战性。这导致准确性和可处理性之间存在不利的权衡。在这里,我们使用端到端深度学习来改进计算流体动力学中的近似值,以模拟二维湍流。对于湍流的直接数值模拟和大涡模拟,我们的结果与基线求解器一样准确,在每个空间维度上的分辨率提高了 8 到 10 倍,从而实现了 40 到 80 倍的计算加速。与黑盒机器学习方法相比,我们的方法在长时间模拟中保持稳定,并可以推广到训练之外的强迫函数和雷诺数。我们的方法示例说明了科学计算如何利用机器学习和硬件加速器来提高模拟精度而不牺牲准确性或泛化能力。
Proc Natl Acad Sci U S A. 2021-5-25
Proc Natl Acad Sci U S A. 2023-8-22
Nat Commun. 2022-3-17
Philos Trans A Math Phys Eng Sci. 2002-6-15
Phys Rev Lett. 2021-11-5
Philos Trans A Math Phys Eng Sci. 2021-4-5
Proc Natl Acad Sci U S A. 2019-7-16
Rev Chem Eng. 2024-11-29
Nonlinear Dyn. 2025
Proc Natl Acad Sci U S A. 2025-2-25
Materials (Basel). 2025-1-24
PNAS Nexus. 2024-12-10
Phys Rev Lett. 2021-1-22
Proc Natl Acad Sci U S A. 2019-7-16
Philos Trans A Math Phys Eng Sci. 2019-4-8
Nat Commun. 2018-11-23
Nature. 2015-9-3