Suppr超能文献

利用X射线衍射研究蛋白质动力学。

Study of protein dynamics by X-ray diffraction.

作者信息

Ringe D, Petsko G A

出版信息

Methods Enzymol. 1986;131:389-433. doi: 10.1016/0076-6879(86)31050-4.

Abstract

Properly carried out, high-resolution X-ray diffraction data collection followed by careful least-squares refinement can give the spatial distribution of the high-frequency mean-square displacements in a protein. These displacements reflect both individual atomic fluctuations in hard variables (bond lengths and bond angles) and collective motions involving soft variables (torsion angles, nonbonded interactions). Lower frequency, large amplitude motions and rapid but improbable motions are not quantifiable, but they may lead to such complete disorder that their existence can at least be inferred from the absence of interpretable electron density for some sections of the structure. Interior residues are more rigid than groups on the surface, and structural constraints are reflected in restricted motion even for surface residues. Amplitudes of motion of 0.5 A or greater are not uncommon. The temperature dependence of these fast motions varies considerably over the structure. In general, large [chi 2] values have large temperature dependence, while small displacements are less affected by temperature; however, exceptions are common. Significant reduction in [chi 2] on cooling establishes that proteins are mobile even in the crystalline state, and that static disorder is not the dominant contributor to the individual mean square displacements. Disordered regions in electron density maps are no longer automatically taken as signs of errors in structure determination. It is now recognized that the absence of strong electron density is often an indicator of conformational flexibility. Some of the functional roles for protein dynamics are beginning to be understood. Missing from these results are the physicochemical details that can be extracted from thermal motion analysis of small molecule crystal structures. Application of these methods to protein data is very difficult, but it is well to remember that just over 10 years ago it was commonly felt that protein structures could not even be refined. Certainly some small, well-diffracting proteins should be amenable to many of the sophisticated small-molecule analyses, as they yield X-ray data to resolutions comparable to simple organic structures. The most important type of analysis that awaits is anisotropic B factor refinement, which would give the principal directions of motion added to the amplitude information now obtained. Unfortunately, refinement of unrestrained anisotropic thermal elipsoids requires six parameters for each atom instead of a single isotropic B parameter, and even 1.5 A resolution data do not provide enough overdeterminacy.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

正确进行高分辨率X射线衍射数据收集,随后进行仔细的最小二乘法精修,能够得出蛋白质中高频均方位移的空间分布。这些位移既反映了硬变量(键长和键角)中单个原子的波动,也反映了涉及软变量(扭转角、非键相互作用)的集体运动。低频、大幅度运动以及快速但不太可能的运动是无法量化的,但它们可能导致如此完全的无序,以至于至少可以从结构某些部分不存在可解释的电子密度来推断它们的存在。内部残基比表面上的基团更刚性,并且即使对于表面残基,结构限制也反映在受限的运动中。0.5埃或更大的运动幅度并不罕见。这些快速运动的温度依赖性在整个结构中变化很大。一般来说,大的χ2值具有较大的温度依赖性,而小位移受温度影响较小;然而,例外情况很常见。冷却时χ2的显著降低表明蛋白质即使在结晶状态下也是可移动的,并且静态无序不是单个均方位移的主要贡献因素。电子密度图中的无序区域不再自动被视为结构测定中错误的迹象。现在人们认识到,缺乏强电子密度通常是构象灵活性的一个指标。蛋白质动力学的一些功能作用开始被理解。这些结果中缺少的是可以从小分子晶体结构的热运动分析中提取的物理化学细节。将这些方法应用于蛋白质数据非常困难,但要记住,就在10多年前,人们普遍认为蛋白质结构甚至无法精修。当然,一些易于衍射的小蛋白质应该适合许多复杂的小分子分析,因为它们产生的X射线数据分辨率与简单有机结构相当。等待的最重要类型的分析是各向异性B因子精修,这将给出运动的主要方向,并补充现在获得的幅度信息。不幸的是,无约束各向异性热椭球体的精修每个原子需要六个参数而不是单个各向同性B参数,并且即使是1.5埃分辨率的数据也没有提供足够的超定。(摘要截断于400字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验