Suppr超能文献

利用体内光谱学和机器学习技术早期检测和分类苹果树的不同胁迫

In vivo spectroscopy and machine learning for the early detection and classification of different stresses in apple trees.

机构信息

Laimburg Research Centre, Laimburg 6, 39040, Auer, South Tyrol, Italy.

Eurac Research, Drususallee 1/Viale Druso 1, 39100, Bolzano, South Tyrol, Italy.

出版信息

Sci Rep. 2023 Sep 22;13(1):15857. doi: 10.1038/s41598-023-42428-z.

Abstract

The use of in vivo spectroscopy to detect plant stress in its early stages has the potential to enhance food safety and reduce the need for plant protection products. However, differentiating between various stress types before symptoms appear remains poorly studied. In this study, we investigated the potential of Vis-NIR spectroscopy to differentiate between stress types in apple trees (Malus x domestica Borkh.) exposed to apple scab, waterlogging, and herbicides in a greenhouse. Using a spectroradiometer, we collected spectral signatures of leaves still attached to the tree and utilized machine learning techniques to develop predictive models for detecting stress presence and classifying stress type as early as 1-5 days after exposure. Our findings suggest that changes in spectral reflectance at multiple regions accurately differentiate various types of plant stress on apple trees. Our models were highly accurate (accuracies between 0.94 and 1) when detecting the general presence of stress at an early stage. The wavelengths important for classification relate to photosynthesis via pigment functioning (684 nm) and leaf water (~ 1800-1900 nm), which may be associated with altered gas exchange as a short-term stress response. Overall, our study demonstrates the potential of spectral technology and machine learning for early diagnosis of plant stress, which could lead to reduced environmental burden through optimizing resource utilization in agriculture.

摘要

利用体内光谱学在早期阶段检测植物胁迫,有可能提高食品安全并减少对植物保护产品的需求。然而,在出现症状之前区分各种胁迫类型的研究仍很少。在这项研究中,我们研究了可见-近红外光谱学在温室中区分苹果树(Malus x domestica Borkh.)暴露于苹果黑星病、水淹和除草剂胁迫类型的潜力。我们使用分光辐射计采集仍附在树上的叶片的光谱特征,并利用机器学习技术开发预测模型,以在暴露后 1-5 天尽早检测胁迫的存在并对胁迫类型进行分类。我们的研究结果表明,在多个区域的光谱反射率变化可以准确区分苹果树的各种胁迫类型。我们的模型在早期阶段检测一般胁迫存在时具有很高的准确性(准确性在 0.94 到 1 之间)。对于分类重要的波长与光合作用通过色素功能有关(684nm)和叶片水分(~1800-1900nm),这可能与短期胁迫反应中改变的气体交换有关。总体而言,我们的研究表明光谱技术和机器学习在植物胁迫早期诊断方面具有潜力,这可能通过优化农业资源利用来减少环境负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e09/10517117/359bfd9a5047/41598_2023_42428_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验