Wang Kai, Xia Lei, Yang Xuetong, Du Chang, Tang Tong, Yang Zheng, Ma Shijie, Wan Xinjian, Guan Feng, Shi Bo, Xie Yuanyuan, Zhang Jingyun
Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
Jiangxi Key Laboratory of Horticultural Crops (Fruit, Vegetable & Tea) Breeding, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
Plants (Basel). 2025 Sep 5;14(17):2784. doi: 10.3390/plants14172784.
Cold stress severely limits legume productivity, threatening global food security, particularly in climate-vulnerable regions. This review synthesizes advances in understanding and enhancing cold tolerance in key legumes (chickpea, soybean, lentil, and cowpea), addressing three core questions: (1) molecular/physiological foundations of cold tolerance; (2) how emerging technologies accelerate stress dissection and breeding; and (3) integration strategies and deployment challenges. Legume cold tolerance involves conserved pathways (e.g., Inducer of CBF Expression, C-repeat Binding Factor, Cold-Responsive genes) and species-specific mechanisms like soybean's -mediated pathway. Multi-omics have identified critical genes (e.g., in chickpea, in pea) underlying adaptive traits (membrane stabilization, osmolyte accumulation) that reduce yield losses by 30-50% in tolerant genotypes. Technologically, AI and high-throughput phenotyping achieve >95% accuracy in early cold detection (3-7 days pre-symptoms) via hyperspectral/thermal imaging; deep learning (e.g., CNN-LSTM hybrids) improves trait prediction by 23% over linear models. Genomic selection cuts breeding cycles by 30-50% (to 3-5 years) using GEBVs (Genomic estimated breeding values) from hundreds of thousands of SNPs (Single-nucleotide polymorphisms). Advanced sensors (LIG-based, LoRaWAN) enable real-time monitoring (±0.1 °C precision, <30 s response), supporting precision irrigation that saves 15-40% water while maintaining yields. Key barriers include multi-omics data standardization and cost constraints in resource-limited regions. Integrating molecular insights with AI-driven phenomics and multi-omics is revolutionizing cold-tolerance breeding, accelerating climate-resilient variety development, and offering a blueprint for sustainable agricultural adaptation.
低温胁迫严重限制了豆类作物的产量,对全球粮食安全构成威胁,在气候脆弱地区尤为如此。本综述综合了在理解和提高主要豆类作物(鹰嘴豆、大豆、小扁豆和豇豆)抗寒性方面取得的进展,探讨了三个核心问题:(1)抗寒的分子/生理基础;(2)新兴技术如何加速胁迫剖析和育种;(3)整合策略和部署挑战。豆类作物的抗寒性涉及保守途径(如CBF表达诱导因子、C-重复结合因子、冷响应基因)以及大豆特有的介导途径等物种特异性机制。多组学技术已经鉴定出了一些关键基因(如鹰嘴豆中的、豌豆中的),这些基因是适应性性状(膜稳定性、渗透溶质积累)的基础,在耐性基因型中可使产量损失降低30%-50%。在技术方面,人工智能和高通量表型分析通过高光谱/热成像在早期低温检测(症状出现前3-7天)中实现了>95%的准确率;深度学习(如CNN-LSTM混合模型)比线性模型将性状预测提高了23%。基因组选择利用来自数十万个单核苷酸多态性(SNP)的基因组估计育种值(GEBV)将育种周期缩短了30%-50%(至3-5年)。先进的传感器(基于LIG、LoRaWAN)能够进行实时监测(精度±0.1°C,响应时间<30秒),支持精准灌溉,在保持产量的同时可节水15%-40%。关键障碍包括多组学数据标准化以及资源有限地区的成本限制。将分子见解与人工智能驱动的表型组学和多组学相结合正在彻底改变抗寒育种,加速适应气候变化品种的开发,并为可持续农业适应提供蓝图。