文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

原位鸡尾酒纳米疫苗用于癌症免疫治疗。

In Situ Cocktail Nanovaccine for Cancer Immunotherapy.

机构信息

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

出版信息

Adv Sci (Weinh). 2023 Nov;10(31):e2207697. doi: 10.1002/advs.202207697. Epub 2023 Sep 22.


DOI:10.1002/advs.202207697
PMID:37740439
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10625102/
Abstract

In situ vaccination is a desirable strategy for cancer immunotherapy due to its convenience and capacity to target tumor antigens. Here, an in situ nanovaccine based on a cationic peptide with cholesterol-modified, DP7-C, for cancer immunotherapy is rationally designed, and developed a cancer nanovaccine that is easy to preparate. The nanovaccine includes cocktail small interfering RNAs (siRNAs) and immunologic adjuvant CpG ODNs, has synergistic effect in the cancer treatment. This nanovaccine can induce tumor cell death, promote antigen presentation and relieve immune suppression in the tumor microenvironment (TME). Moreover, this nanovaccine is administered to CT26 (hot) and B16F10 (cold) tumor model mice, in which it targeted the primary tumors and induced systemic antitumor immunity to inhibit metastasis. It is validated that the nanovaccine can convert cold tumors into hot tumors. Furthermore, the nanovaccine increased the immune response to anti-PD-1 therapy by modulating the TME in both CT26- and B16F10-tumor-bearing mice. The siRNA cocktail/CpG ODN/self-assembling peptide nanovaccine is a simple and universal tool that can effectively generate specific tumor cell antigens and can be combined with immuno-oncology agents to enhance antitumor immune activity. The versatile methodology provides an alternative approach for developing cancer nanovaccines.

摘要

原位疫苗接种因其方便性和靶向肿瘤抗原的能力而成为癌症免疫治疗的理想策略。在这里,我们合理设计了一种基于带有胆固醇修饰的阳离子肽的原位纳米疫苗 DP7-C,用于癌症免疫治疗,并开发了一种易于制备的癌症纳米疫苗。该纳米疫苗包含鸡尾酒小分子干扰 RNA(siRNA)和免疫佐剂 CpG ODN,在癌症治疗中具有协同作用。该纳米疫苗可诱导肿瘤细胞死亡,促进抗原呈递并缓解肿瘤微环境(TME)中的免疫抑制。此外,该纳米疫苗被施用于 CT26(热)和 B16F10(冷)肿瘤模型小鼠中,其靶向原发性肿瘤并诱导全身性抗肿瘤免疫以抑制转移。研究表明,该纳米疫苗可将冷肿瘤转化为热肿瘤。此外,该纳米疫苗通过调节 CT26 和 B16F10 荷瘤小鼠的 TME,增加了对抗 PD-1 治疗的免疫反应。siRNA 鸡尾酒/CpG ODN/自组装肽纳米疫苗是一种简单且通用的工具,可有效产生特异性肿瘤细胞抗原,并可与免疫肿瘤药物联合使用,以增强抗肿瘤免疫活性。这种多功能方法为开发癌症纳米疫苗提供了一种替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0270/10625102/68333088fdf9/ADVS-10-2207697-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0270/10625102/bf009d7bcb5a/ADVS-10-2207697-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0270/10625102/5bebd57dbd5a/ADVS-10-2207697-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0270/10625102/dce5ed570884/ADVS-10-2207697-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0270/10625102/9130f600aa67/ADVS-10-2207697-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0270/10625102/efc3ff134d29/ADVS-10-2207697-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0270/10625102/ea5eff906555/ADVS-10-2207697-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0270/10625102/68333088fdf9/ADVS-10-2207697-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0270/10625102/bf009d7bcb5a/ADVS-10-2207697-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0270/10625102/5bebd57dbd5a/ADVS-10-2207697-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0270/10625102/dce5ed570884/ADVS-10-2207697-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0270/10625102/9130f600aa67/ADVS-10-2207697-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0270/10625102/efc3ff134d29/ADVS-10-2207697-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0270/10625102/ea5eff906555/ADVS-10-2207697-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0270/10625102/68333088fdf9/ADVS-10-2207697-g002.jpg

相似文献

[1]
In Situ Cocktail Nanovaccine for Cancer Immunotherapy.

Adv Sci (Weinh). 2023-11

[2]
Polyoxazoline-Based Nanovaccine Synergizes with Tumor-Associated Macrophage Targeting and Anti-PD-1 Immunotherapy against Solid Tumors.

Adv Sci (Weinh). 2023-9

[3]
Enhanced Antitumor Immune Responses via a Self-Assembled Carrier-Free Nanovaccine.

Nano Lett. 2021-5-12

[4]
A Nanovaccine Based on Adjuvant Peptide FK-13 and l-Phenylalanine Poly(ester amide) Enhances CD8 T Cell-Mediated Antitumor Immunity.

Adv Sci (Weinh). 2023-7

[5]
Dual-Targeted Self-Adjuvant Heterocyclic Lipidoid@Polyester Hybrid Nanovaccines for Boosting Cancer Immunotherapy.

ACS Nano. 2024-6-18

[6]
A generally minimalist strategy of constructing biomineralized high-efficiency personalized nanovaccine combined with immune checkpoint blockade for cancer immunotherapy.

Biomaterials. 2022-10

[7]
Monophosphoryl lipid A-assembled nanovaccines enhance tumor immunotherapy.

Acta Biomater. 2023-11

[8]
Minimalist Nanovaccine with Optimized Amphiphilic Copolymers for Cancer Immunotherapy.

ACS Nano. 2024-1-30

[9]
A Visible Codelivery Nanovaccine of Antigen and Adjuvant with Self-Carrier for Cancer Immunotherapy.

ACS Appl Mater Interfaces. 2019-1-25

[10]
Ferroptosis and Necroptosis Produced Autologous Tumor Cell Lysates Co-Delivering with Combined Immnoadjuvants as Personalized Nanovaccines for Antitumor Immunity.

ACS Nano. 2023-8-8

引用本文的文献

[1]
Biomimetic nanovaccines in cancer therapy: mechanisms, efficacy, and clinical translation.

Mater Today Bio. 2025-7-18

[2]
Bispecific targeting of 4-1BB and CCR8 boosts antitumor immunity via Ti-Treg depletion and CD8 activation.

iScience. 2025-6-4

[3]
pH-responsive nano-vaccine combined with anti-PD-1 antibodies for enhanced immunotherapy of breast cancer.

Theranostics. 2025-4-28

[4]
Nano drug delivery systems for advanced immune checkpoint blockade therapy.

Theranostics. 2025-4-13

[5]
Cancer Nanovaccines: Mechanisms, Design Principles, and Clinical Translation.

ACS Nano. 2025-5-6

[6]
Silicasomes in Oncology: From Conventional Chemotherapy to Combined Immunotherapy.

Molecules. 2025-3-11

[7]
Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines.

Signal Transduct Target Ther. 2025-3-10

[8]
Cancer Vaccines and Beyond: The Transformative Role of Nanotechnology in Immunotherapy.

Pharmaceutics. 2025-2-7

[9]
Single-cell encoded gene silencing for high-throughput combinatorial siRNA screening.

Nat Commun. 2024-11-19

[10]
Advancing cancer treatment: delivery of therapeutic small noncoding RNAs.

Front Mol Biosci. 2024-1-3

本文引用的文献

[1]
Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018-2021).

Acta Pharm Sin B. 2022-7

[2]
Novel strategies exploiting interleukin-12 in cancer immunotherapy.

Pharmacol Ther. 2022-11

[3]
A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance.

Nat Immunol. 2022-5

[4]
Immunogenic cell stress and death.

Nat Immunol. 2022-4

[5]
Targeting CD38 and PD-1 with isatuximab plus cemiplimab in patients with advanced solid malignancies: results from a phase I/II open-label, multicenter study.

J Immunother Cancer. 2022-1

[6]
Remodeling of the tumor microenvironment via disrupting Blimp1 effector Treg activity augments response to anti-PD-1 blockade.

Mol Cancer. 2021-11-20

[7]
Role of the CCL2-CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting.

Cell Prolif. 2021-10

[8]
Sustained and targeted delivery of siRNA/DP7-C nanoparticles from injectable thermosensitive hydrogel for hepatocellular carcinoma therapy.

Cancer Sci. 2021-6

[9]
Cytocompatibility, membrane disruption, and siRNA delivery using environmentally responsive cationic nanogels.

J Control Release. 2021-4-10

[10]
Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy.

J Control Release. 2021-4-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索