文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于佐剂肽 FK-13 和 l-苯丙氨酸聚酯酰胺的纳米疫苗增强了 CD8 T 细胞介导的抗肿瘤免疫。

A Nanovaccine Based on Adjuvant Peptide FK-13 and l-Phenylalanine Poly(ester amide) Enhances CD8 T Cell-Mediated Antitumor Immunity.

机构信息

State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China.

Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

出版信息

Adv Sci (Weinh). 2023 Jul;10(20):e2300418. doi: 10.1002/advs.202300418. Epub 2023 May 10.


DOI:10.1002/advs.202300418
PMID:37162249
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10369282/
Abstract

Cancer vaccines have shown promise as effective means of antitumor immunotherapy by inducing tumor antigen-specific T cell immunity. In this study, a novel peptide-based tumor nanovaccine that boosts antigen presentation and elicits effective antitumor immunity is developed. The adjuvant characteristics of an antimicrobial peptide-derived core peptide, FK-13, are investigated and used it to generate a fusion peptide named FK-33 with tumor antigen epitopes. l-phenylalanine-based poly(ester amide) (Phe-PEA), 8p4, is also identified as a competent delivery vehicle for the fusion peptide FK-33. Notably, the vaccination of 8p4 + FK-33 nanoparticles (8FNs) in vivo induces dendritic cell activation in the lymph nodes and elicits robust tumor antigen-specific CD8 T cell response. The nanovaccine 8FNs demonstrate significant therapeutic and prophylactic efficacy against in situ tumor growth, effectively inhibit tumor metastasis, and significantly prolong the survival of tumor-bearing mice. Moreover, 8FNs can incorporate different tumor antigens and exhibit a synergistic therapeutic effect with antiprogrammed cell death protein 1 (PD-1) therapy. In summary, 8FNs represent a promising platform for personalized cancer vaccines and may serve as a potential combinational modality to improve current immunotherapy.

摘要

癌症疫苗通过诱导肿瘤抗原特异性 T 细胞免疫,已显示出作为抗肿瘤免疫疗法的有效手段的潜力。在这项研究中,开发了一种新型基于肽的肿瘤纳米疫苗,可增强抗原呈递并引发有效的抗肿瘤免疫。研究了一种抗菌肽衍生核心肽 FK-13 的佐剂特性,并将其用于生成具有肿瘤抗原表位的融合肽 FK-33。基于 l-苯丙氨酸的聚(酯酰胺)(Phe-PEA)8p4 也被鉴定为融合肽 FK-33 的有效递药载体。值得注意的是,体内接种 8p4+FK-33 纳米颗粒(8FNs)可在淋巴结中诱导树突状细胞激活,并引发强烈的肿瘤抗原特异性 CD8 T 细胞反应。纳米疫苗 8FNs 对原位肿瘤生长具有显著的治疗和预防功效,有效抑制肿瘤转移,并显著延长荷瘤小鼠的存活时间。此外,8FNs 可纳入不同的肿瘤抗原,并与抗程序性细胞死亡蛋白 1(PD-1)治疗具有协同治疗作用。总之,8FNs 代表了个性化癌症疫苗的有前途的平台,并且可能作为一种潜在的联合方式来改善当前的免疫疗法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/10369282/afee592d7fd2/ADVS-10-2300418-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/10369282/530235c74a7a/ADVS-10-2300418-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/10369282/3fe27b2701d4/ADVS-10-2300418-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/10369282/c0dabef0ac2c/ADVS-10-2300418-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/10369282/5dde415d3245/ADVS-10-2300418-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/10369282/412bab300c89/ADVS-10-2300418-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/10369282/744d07cc03f1/ADVS-10-2300418-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/10369282/afee592d7fd2/ADVS-10-2300418-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/10369282/530235c74a7a/ADVS-10-2300418-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/10369282/3fe27b2701d4/ADVS-10-2300418-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/10369282/c0dabef0ac2c/ADVS-10-2300418-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/10369282/5dde415d3245/ADVS-10-2300418-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/10369282/412bab300c89/ADVS-10-2300418-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/10369282/744d07cc03f1/ADVS-10-2300418-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c13/10369282/afee592d7fd2/ADVS-10-2300418-g001.jpg

相似文献

[1]
A Nanovaccine Based on Adjuvant Peptide FK-13 and l-Phenylalanine Poly(ester amide) Enhances CD8 T Cell-Mediated Antitumor Immunity.

Adv Sci (Weinh). 2023-7

[2]
Self-assembly nanovaccine containing TLR7/8 agonist and STAT3 inhibitor enhances tumor immunotherapy by augmenting tumor-specific immune response.

J Immunother Cancer. 2021-8

[3]
Antigen epitope-TLR7/8a conjugate as self-assembled carrier-free nanovaccine for personalized immunotherapy.

Acta Biomater. 2022-3-15

[4]
A Cancer Nanovaccine for Co-Delivery of Peptide Neoantigens and Optimized Combinations of STING and TLR4 Agonists.

ACS Nano. 2024-3-5

[5]
Supramolecular assembly of a trivalent peptide hydrogel vaccine for cancer immunotherapy.

Acta Biomater. 2023-3-1

[6]
Nano-adjuvants and immune agonists promote antitumor immunity of peptide amphiphiles.

Acta Biomater. 2023-4-15

[7]
Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response.

Biomaterials. 2017-9-26

[8]
In Situ Cocktail Nanovaccine for Cancer Immunotherapy.

Adv Sci (Weinh). 2023-11

[9]
Elastic Nanovaccine Enhances Dendritic Cell-Mediated Tumor Immunotherapy.

Small. 2022-8

[10]
RNA Origami Functions as a Self-Adjuvanted Nanovaccine Platform for Cancer Immunotherapy.

ACS Nano. 2024-2-6

引用本文的文献

[1]
Nano drug delivery systems for advanced immune checkpoint blockade therapy.

Theranostics. 2025-4-13

[2]
Nanovaccines empowering CD8 T cells: a precision strategy to enhance cancer immunotherapy.

Theranostics. 2025-2-10

[3]
Invasion and metastasis in cancer: molecular insights and therapeutic targets.

Signal Transduct Target Ther. 2025-2-21

[4]
Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges.

Mol Cancer. 2025-1-18

[5]
Personalized nanovaccines for treating solid cancer metastases.

J Hematol Oncol. 2024-11-28

[6]
Recent advances in the development of poly(ester amide)s-based carriers for drug delivery.

Saudi Pharm J. 2024-7

[7]
Engineering customized nanovaccines for enhanced cancer immunotherapy.

Bioact Mater. 2024-3-10

[8]
The quest for nanoparticle-powered vaccines in cancer immunotherapy.

J Nanobiotechnology. 2024-2-14

[9]
Human serum albumin as the carrier to fabricate STING-activating peptide nanovaccine for antitumor immunotherapy.

Mater Today Bio. 2024-1-14

[10]
Supramolecular Biomaterials for Cancer Immunotherapy.

Research (Wash D C). 2023-9-12

本文引用的文献

[1]
Elastic Nanovaccine Enhances Dendritic Cell-Mediated Tumor Immunotherapy.

Small. 2022-8

[2]
A Metabolic Reprogramming Amino Acid Polymer as an Immunosurveillance Activator and Leukemia Targeting Drug Carrier for T-Cell Acute Lymphoblastic Leukemia.

Adv Sci (Weinh). 2022-3

[3]
Targeted Delivery of Miconazole Employing LL37 Fragment Mutant Peptide CKR12-Poly (Lactic-Co-Glycolic) Acid Polymeric Micelles.

Int J Mol Sci. 2021-11-8

[4]
Nanovaccine: an emerging strategy.

Expert Rev Vaccines. 2021-10

[5]
Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1 CD8 T cells in tumor-draining lymph nodes.

Immunity. 2021-10-12

[6]
Therapeutic cancer vaccines.

Nat Rev Cancer. 2021-6

[7]
Emerging concepts in the science of vaccine adjuvants.

Nat Rev Drug Discov. 2021-6

[8]
Vaccine Therapies for Cancer: Then and Now.

Target Oncol. 2021-3

[9]
Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma.

Nat Med. 2021-3

[10]
Intravenous nanoparticle vaccination generates stem-like TCF1 neoantigen-specific CD8 T cells.

Nat Immunol. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索