Suppr超能文献

用于生物聚类和分形聚集的计算中尺度框架。

Computational mesoscale framework for biological clustering and fractal aggregation.

作者信息

Zohravi Elnaz, Moreno Nicolas, Ellero Marco

机构信息

Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, Bilbao 48009, Spain.

IKERBASQUE, Basque Foundation for Science, Calle de Maria Diaz de Haro 3, 48013, Bilbao, Spain.

出版信息

Soft Matter. 2023 Oct 4;19(38):7399-7411. doi: 10.1039/d3sm01090b.

Abstract

Hierarchical clustering due to diffusion and reaction is a widespread occurrence in natural phenomena, displaying fractal behavior with non-integer size scaling. The study of this phenomenon has garnered interest in both biological systems such as morphogenesis and blood clotting, and synthetic systems such as colloids and polymers. The modeling of biological clustering can be difficult, as it can occur on a variety of scales and involve multiple mechanisms, necessitating the use of various methods to capture its behavior. Here, we propose a novel framework, the generalized-mesoscale-clustering (GMC), for the study of complex hierarchical clustering phenomena in biological systems. The GMC framework incorporates the effects of hydrodynamic interactions, bonding, and surface tension, and allows for the analysis of both static and dynamic states of cluster development. The framework is applied to a range of biological clustering mechanisms, with a focus on blood-related clustering from fibrin network formation to platelet aggregation. Our study highlights the importance of a comprehensive characterization of the structural properties of the cluster, including fractal dimension, pore-scale diffusion, initiation time, and consolidation time, in fully understanding the behavior of biological clustering systems. The GMC framework also provides the potential to investigate the temporal evolution and mechanical properties of the clusters by tracking bond density and including hydrodynamic interactions.

摘要

由于扩散和反应导致的层次聚类在自然现象中广泛存在,呈现出具有非整数尺寸缩放的分形行为。对这一现象的研究在诸如形态发生和血液凝固等生物系统以及诸如胶体和聚合物等合成系统中都引起了关注。生物聚类的建模可能很困难,因为它可能发生在各种尺度上并且涉及多种机制,这就需要使用各种方法来捕捉其行为。在此,我们提出了一种新颖的框架,即广义中尺度聚类(GMC),用于研究生物系统中复杂的层次聚类现象。GMC框架纳入了流体动力相互作用、键合和表面张力的影响,并允许对聚类发展的静态和动态状态进行分析。该框架应用于一系列生物聚类机制,重点是从纤维蛋白网络形成到血小板聚集的与血液相关的聚类。我们的研究强调了全面表征聚类结构特性的重要性,包括分形维数、孔隙尺度扩散、起始时间和固结时间,以充分理解生物聚类系统的行为。GMC框架还提供了通过跟踪键密度并纳入流体动力相互作用来研究聚类的时间演变和力学性质的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验