Suppr超能文献

人工智能驱动的全蛋白质组分析揭示了……的生物湿法冶金特性。 (注:原文句末不完整,缺少具体所指对象)

AI-driven pan-proteome analyses reveal insights into the biohydrometallurgical properties of .

作者信息

Li Liangzhi, Zhou Lei, Jiang Chengying, Liu Zhenghua, Meng Delong, Luo Feng, He Qiang, Yin Huaqun

机构信息

School of Minerals Processing and Bioengineering, Central South University, Changsha, China.

Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.

出版信息

Front Microbiol. 2023 Sep 7;14:1243987. doi: 10.3389/fmicb.2023.1243987. eCollection 2023.

Abstract

Microorganism-mediated biohydrometallurgy, a sustainable approach for metal recovery from ores, relies on the metabolic activity of acidophilic bacteria. with sulfur/iron-oxidizing capacities are extensively studied and applied in biohydrometallurgy-related processes. However, only 14 distinct proteins from have experimentally determined structures currently available. This significantly hampers in-depth investigations of 's structure-based biological mechanisms pertaining to its relevant biohydrometallurgical processes. To address this issue, we employed a state-of-the-art artificial intelligence (AI)-driven approach, with a median model confidence of 0.80, to perform high-quality full-chain structure predictions on the pan-proteome (10,458 proteins) of the type strain . Additionally, we conducted various case studies on protein structural prediction, including sulfate transporter and iron oxidase, to demonstrate how accurate structure predictions and gene co-occurrence networks can contribute to the development of mechanistic insights and hypotheses regarding sulfur and iron utilization proteins. Furthermore, for the unannotated proteins that constitute 35.8% of the proteome, we employed the deep-learning algorithm DeepFRI to make structure-based functional predictions. As a result, we successfully obtained gene ontology (GO) terms for 93.6% of these previously unknown proteins. This study has a significant impact on improving protein structure and function predictions, as well as developing state-of-the-art techniques for high-throughput analysis of large proteomic data.

摘要

微生物介导的生物湿法冶金是一种从矿石中回收金属的可持续方法,它依赖于嗜酸细菌的代谢活性。具有硫/铁氧化能力的嗜酸细菌已得到广泛研究,并应用于与生物湿法冶金相关的过程。然而,目前仅有来自嗜酸细菌的14种不同蛋白质具有通过实验确定的结构。这严重阻碍了对嗜酸细菌与相关生物湿法冶金过程有关的基于结构的生物学机制进行深入研究。为了解决这个问题,我们采用了一种先进的人工智能(AI)驱动方法,模型置信度中位数为0.80,对模式菌株嗜酸细菌的泛蛋白质组(10458种蛋白质)进行高质量的全链结构预测。此外,我们对嗜酸细菌的蛋白质结构预测开展了各种案例研究,包括硫酸盐转运蛋白和铁氧化酶,以证明准确的结构预测和基因共现网络如何有助于深入了解有关硫和铁利用蛋白的机制并提出假设。此外,对于占嗜酸细菌蛋白质组35.8%的未注释蛋白质,我们使用深度学习算法DeepFRI进行基于结构的功能预测。结果,我们成功为这些以前未知的蛋白质中的93.6%获得了基因本体(GO)术语。这项研究对改进蛋白质结构和功能预测以及开发用于高通量分析大型蛋白质组数据的先进技术具有重大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b13a/10512742/27960ce69b0d/fmicb-14-1243987-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验