Suppr超能文献

用于预测ST段抬高型心肌梗死患者溶栓后转运行急诊经皮冠状动脉介入治疗后左心室射血分数的列线图模型。

A nomogramic model for predicting the left ventricular ejection fraction of STEMI patients after thrombolysis-transfer PCI.

作者信息

Liu Shuai, Jiang Zhihui, Zhang Yuanyuan, Pang Shuwen, Hou Yan, Liu Yipei, Huang Yuekang, Peng Na, Tang Youqing

机构信息

Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China.

Department of Emergency Medicine, General Hospital of Southern Theater Command, Guangzhou, China.

出版信息

Front Cardiovasc Med. 2023 Sep 8;10:1178417. doi: 10.3389/fcvm.2023.1178417. eCollection 2023.

Abstract

BACKGROUND

The prognosis of ST-segment elevation myocardial infarction (STEMI) is closely linked to left ventricular ejection fraction (LVEF). In contrast to primary percutaneous coronary intervention (PPCI), thrombolysis-transfer PCI (TTPCI) is influenced by multiple factors that lead to heterogeneity in cardiac function and prognosis. The aim of this study is to develop a nomogram model for predicting early LVEF in STEMI patients with TTPCI, based on routine indicators at admission.

METHOD

We retrospectively reviewed data from patients diagnosed with STEMI at five network hospitals of our PCI center who performed TTPCI as door-to-balloon time (the interval between arrival at the hospital and intracoronary balloon inflation) over 120 min, from February 2018 to April 2022. Categorical variables were analyzed using Pearson tests or Fisher exact tests, while Student's -test or Mann-Whitney -test was used to compare continuous variables. Subsequently, independent risk factors associated with reduced LVEF one week after TTPCI were identified through comprehensive analysis by combining All-Subsets Regression with Logistic Regression. Based on these indicators, a nomogram model was developed, and validated using the area under the receiver operating characteristic (ROC) curve and the Bootstrap method.

RESULTS

A total of 288 patients were analyzed, including 60 with LVEF < 50% and 228 with LVEF ≥ 50%. The nomogram model based on six independent risk factors including age, heart rate (HR), hypertension, smoking history, Alanine aminotransferase (ALT), and Killip class, demonstrated excellent discrimination with an AUC of 0.84 (95% CI: 0.78-0.89), predicted C-index of 0.84 and curve fit of 0.713.

CONCLUSIONS

The nomogram model incorporating age, HR, hypertension, smoking history, ALT and Killip class could accurately predict the early LVEF ≥ 50% probability of STEMI patients undergoing TTPCI, and enable clinicians' early evaluation of cardiac function in STEMI patients with TTPCI and early optimization of treatment.

摘要

背景

ST段抬高型心肌梗死(STEMI)的预后与左心室射血分数(LVEF)密切相关。与直接经皮冠状动脉介入治疗(PPCI)不同,溶栓后转运PCI(TTPCI)受多种因素影响,导致心功能和预后存在异质性。本研究的目的是基于入院时的常规指标,建立一个预测接受TTPCI的STEMI患者早期LVEF的列线图模型。

方法

我们回顾性分析了2018年2月至2022年4月期间在我们PCI中心的五家网络医院被诊断为STEMI且门球时间(到达医院至冠状动脉内球囊扩张的间隔时间)超过120分钟并接受TTPCI的患者的数据。分类变量采用Pearson检验或Fisher确切检验进行分析,连续变量采用Student's t检验或Mann-Whitney U检验进行比较。随后,通过将全子集回归与逻辑回归相结合进行综合分析,确定与TTPCI术后一周LVEF降低相关的独立危险因素。基于这些指标,建立了列线图模型,并使用受试者操作特征(ROC)曲线下面积和Bootstrap方法进行验证。

结果

共分析了288例患者,其中60例LVEF<50%,228例LVEF≥50%。基于年龄、心率(HR)、高血压、吸烟史、丙氨酸转氨酶(ALT)和Killip分级这六个独立危险因素的列线图模型显示出良好的区分度,AUC为0.84(95%CI:0.78 - 0.89),预测C指数为0.84,曲线拟合度为0.713。

结论

纳入年龄、HR、高血压、吸烟史、ALT和Killip分级的列线图模型可以准确预测接受TTPCI的STEMI患者早期LVEF≥50%的概率,并有助于临床医生对接受TTPCI的STEMI患者的心功能进行早期评估以及对治疗进行早期优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5cd/10517723/e96b73013068/fcvm-10-1178417-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验