Suppr超能文献

预测老年 ST 段抬高型心肌梗死患者经皮冠状动脉介入治疗后对比剂诱导急性肾损伤的模型。

A Predictive Model for Contrast-Induced Acute Kidney Injury After Percutaneous Coronary Intervention in Elderly Patients with ST-Segment Elevation Myocardial Infarction.

机构信息

Institute of Cardiovascular Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.

Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.

出版信息

Clin Interv Aging. 2023 Mar 22;18:453-465. doi: 10.2147/CIA.S402408. eCollection 2023.

Abstract

PURPOSE

Development and validation of a nomogram model to predict the risk of Contrast-Induced Acute Kidney Injury (CI-AKI) after emergency percutaneous coronary intervention (PCI) in elderly patients with acute ST-segment elevation myocardial infarction (STEMI).

PATIENTS AND METHODS

Retrospective analysis of 542 elderly (≥65 years) STEMI patients undergoing emergency PCI in our hospital from January 2019 to June 2022, with all patients randomized to the training cohort (70%; n=380) and the validation cohort (30%; n=162). Univariate analysis, LASSO regression, and multivariate logistic regression analysis were used to determine independent risk factors for developing CI-AKI in elderly STEMI patients. R software is used to generate a nomogram model. The predictive power of the nomogram model was compared with the Mehran score 2. The area under the ROC curve (AUC), calibration curves, and decision curve analysis (DCA) was used to evaluate the prediction model's discrimination, calibration, and clinical validity, respectively.

RESULTS

The nomogram model consisted of five variables: diabetes mellitus (DM), left ventricular ejection fraction (LVEF), Systemic immune-inflammatory index (SII), N-terminal pro-brain natriuretic peptide (NT-proBNP), and highly sensitive C-reactive protein(hsCRP). In the training cohort, the AUC is 0.84 (95% CI: 0.790-0.890), and in the validation cohort, it is 0.844 (95% CI: 0.762-0.926). The nomogram model has better predictive ability than Mehran score 2. Based on the calibration curves, the predicted and observed values of the nomogram model were in good agreement between the training and validation cohort. Decision curve analysis (DCA) and clinical impact curve showed that the nomogram prediction model has good clinical utility.

CONCLUSION

The established nomogram model can intuitively and specifically screen high-risk groups with a high degree of discrimination and accuracy and has a specific predictive value for CI-AKI occurrence in elderly STEMI patients after PCI.

摘要

目的

建立并验证一个列线图模型,以预测行急诊经皮冠状动脉介入治疗(PCI)的老年急性 ST 段抬高型心肌梗死(STEMI)患者发生对比剂诱导的急性肾损伤(CI-AKI)的风险。

方法

回顾性分析 2019 年 1 月至 2022 年 6 月在我院行急诊 PCI 的 542 例老年(≥65 岁)STEMI 患者,所有患者随机分为训练队列(70%;n=380)和验证队列(30%;n=162)。采用单因素分析、LASSO 回归和多因素逻辑回归分析确定老年 STEMI 患者发生 CI-AKI 的独立危险因素。R 软件用于生成列线图模型。比较列线图模型与 Mehran 评分 2 对 CI-AKI 的预测能力。使用 ROC 曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)分别评估预测模型的判别能力、校准能力和临床有效性。

结果

列线图模型由 5 个变量组成:糖尿病(DM)、左心室射血分数(LVEF)、系统性免疫炎症指数(SII)、N 末端脑利钠肽前体(NT-proBNP)和高敏 C 反应蛋白(hsCRP)。在训练队列中,AUC 为 0.84(95%CI:0.790-0.890),在验证队列中为 0.844(95%CI:0.762-0.926)。列线图模型的预测能力优于 Mehran 评分 2。基于校准曲线,训练队列和验证队列中列线图模型的预测值与观察值吻合较好。决策曲线分析(DCA)和临床影响曲线显示,列线图预测模型具有良好的临床应用价值。

结论

建立的列线图模型可以直观、准确地筛选出具有高度区分度和准确性的高危人群,对 PCI 后老年 STEMI 患者 CI-AKI 的发生具有特定的预测价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb7f/10040169/3cf01affaeb2/CIA-18-453-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验