Pasarkar Amol, Kinsella Ian, Zhou Pengcheng, Wu Melissa, Pan Daisong, Fan Jiang Lan, Wang Zhen, Abdeladim Lamiae, Peterka Darcy S, Adesnik Hillel, Ji Na, Paninski Liam
Center for Theoretical Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
Department of Computer Science, Columbia University, New York, NY, 10027, USA.
bioRxiv. 2023 Sep 15:2023.09.14.557777. doi: 10.1101/2023.09.14.557777.
A number of calcium imaging methods have been developed to monitor the activity of large populations of neurons. One particularly promising approach, Bessel imaging, captures neural activity from a volume by projecting within the imaged volume onto a single imaging plane, therefore effectively mixing signals and increasing the number of neurons imaged per pixel. These signals must then be computationally demixed to recover the desired neural activity. Unfortunately, currently-available demixing methods can perform poorly in the regime of high imaging density (i.e., many neurons per pixel). In this work we introduce a new pipeline (maskNMF) for demixing dense calcium imaging data. The main idea is to first denoise and temporally sparsen the observed video; this enhances signal strength and reduces spatial overlap significantly. Next we detect neurons in the sparsened video using a neural network trained on a library of neural shapes. These shapes are derived from segmented electron microscopy images input into a Bessel imaging model; therefore no manual selection of "good" neural shapes from the functional data is required here. After cells are detected, we use a constrained non-negative matrix factorization approach to demix the activity, using the detected cells' shapes to initialize the factorization. We test the resulting pipeline on both simulated and real datasets and find that it is able to achieve accurate demixing on denser data than was previously feasible, therefore enabling faithful imaging of larger neural populations. The method also provides good results on more "standard" two-photon imaging data. Finally, because much of the pipeline operates on a significantly compressed version of the raw data and is highly parallelizable, the algorithm is fast, processing large datasets faster than real time.
已经开发出多种钙成像方法来监测大量神经元的活动。一种特别有前景的方法——贝塞尔成像,通过在成像体积内投影到单个成像平面来从一个体积中捕获神经活动,因此有效地混合了信号并增加了每个像素成像的神经元数量。然后必须对这些信号进行计算解混以恢复所需的神经活动。不幸的是,目前可用的解混方法在高成像密度(即每个像素有许多神经元)的情况下可能表现不佳。在这项工作中,我们引入了一种用于解混密集钙成像数据的新管道(maskNMF)。主要思想是首先对观察到的视频进行去噪和时间上的稀疏化;这增强了信号强度并显著减少了空间重叠。接下来,我们使用在神经形状库上训练的神经网络在稀疏化的视频中检测神经元。这些形状来自输入到贝塞尔成像模型中的分割电子显微镜图像;因此这里不需要从功能数据中手动选择“好的”神经形状。在检测到细胞后,我们使用约束非负矩阵分解方法来解混活动,使用检测到的细胞形状来初始化分解。我们在模拟和真实数据集上测试了所得管道,发现它能够在比以前可行的更密集的数据上实现准确的解混,从而能够对更大的神经群体进行可靠成像。该方法在更“标准”的双光子成像数据上也提供了良好的结果。最后,由于管道的大部分操作是在原始数据的显著压缩版本上进行的,并且具有高度可并行性,该算法速度很快,处理大型数据集的速度比实时速度还快。