Liu Fangyu, Kaplan Anat Levit, Levring Jesper, Einsiedel Jürgen, Tiedt Stephanie, Distler Katharina, Omattage Natalie S, Kondratov Ivan S, Moroz Yurii S, Pietz Harlan L, Irwin John J, Gmeiner Peter, Shoichet Brian K, Chen Jue
Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA.
Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA.
bioRxiv. 2024 Mar 11:2023.09.09.557002. doi: 10.1101/2023.09.09.557002.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, while its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify novel CFTR modulators. We docked ~155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered novel mid-nanomolar potentiators as well as inhibitors that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.
囊性纤维化跨膜传导调节因子(CFTR)是一种关键的离子通道,其功能丧失会导致囊性纤维化,而其过度激活则会导致分泌性腹泻。临床上已有能够改善CFTR折叠(校正剂)或功能(增效剂)的小分子药物。然而,唯一的增效剂依伐卡托的药代动力学并不理想,且抑制剂尚未进入临床开发阶段。在此,我们结合分子对接、电生理学、冷冻电镜和药物化学方法来鉴定新型CFTR调节剂。我们将约1.55亿个分子对接至CFTR的增效剂位点,合成了53种测试配体,并利用基于结构的优化方法来鉴定候选调节剂。这种方法发现了新型的中纳摩尔浓度增效剂以及结合至同一别构位点的抑制剂。这些分子代表了开发用于治疗囊性纤维化和分泌性腹泻的更有效药物的潜在先导物,证明了大规模对接用于离子通道药物发现的可行性。